当x?????,x0?时,g'?x??0,g?x?单调递增, ?2?当x??x0,3?时,g'?x??0,g?x?单调递减.
??????0, 又g???ln???224??g?2?? ln2?cos2?0 g?3??ln3?6?9?cos3?0
所以存在唯一x2??2,3?,使得g?x2??0.
当x?[3,??)时,g?x??x?1?2x?x2?1??x2?3x?0, 故不存在零点.
综上,g?x?存在两个零点x1,x2,且x1??0,2?,x0??2,3? 因此n?m的最小值为3.
22. [选修4-4:坐标系与参数方程]
解: ?1?曲线C的普通方程为?x?1??y2?1?y?0?,
22极坐标方程为?? 2cos?????0,???????? 2???点P的普通方程为x?2?y?0?,
所以点P轨迹的极坐标方程为?cos??2????0,???????? ?2???2?设点M??1,?0?,点P(?2,?0),
则?1?2cos?0,?2?2 cos?0由PM?3可得?2??1?3, 即
2?2cos?0?3, cos?0???Q?0??0,?
?2? 17
?cos?1?0?2,?0?3
所以?22??4,点P的极坐标为???cos???4,3?? 323. [选修4- 5:不等式选讲]
? ?2,x??1,?1?解: f?x????2x,?1?x?1,
??2,x?1,所以,当?1?x?1时,?2?f?x??2, 综上,当x?1时,f?x?有最大值2,M?2.
?2?证明:Q0?a?b?c?2,
??a?b?c?2?4,
?a2?b2?c2?2?ab?ac?bc??4,
又由柯西不等式知a2?b2?c2?ab?ac?bc 所以3?ab?ac?bc??4, 所以ab?ac?bc?43 18