??1?n??2n?2?1?????2n?2
???2???综上可得,当n?N*时,
an?1aaaa1?n?1?2,2?3?4?????n?1?2n?2 an2a1a2a3an19. ?1?证明:设圆O1,O2,的半径分别为r,2r,
因为圆台的侧面积为6?, 所以6??1?2(2?r?4?r),可得r?1, 2因此,在等腰梯形A1A2B2B1中,A1A2?2B1B2?4,A1B1?2,OO12,?3. 如图3,连接线段O1O2,O1C,O2C,
在圆台O1O2中,O1O2?平面B1CB2,O2C?平面B1CB2, 所以O1O2?O1C. 又O1C?1,
O1CO2中,CO2?2. 所以在V在VCA1A2中,CO2?1A1A2, 2?A2C. 故?ACA12?90?,即AC1?2?解:由题意可知,三棱锥C?A1DA2的体积为VC?ADA12?13O1O2SVA1CA2?A1DA2D 36又在直角三角形A1DA2中,A1D?A2D?A1A2?16?2A1DA2D 所以当且仅当A1D?A2D?22,
即点D为弧A1A2的中点时,C?A1DA2有最大值
22243 3 13
过点C作CM?O1B2,交O1B2于点M, 因为O1O2?平面B1CB2,CM?平面B1CB2, 所以O1O2?CM,O1O2?平面A1A2B2B1
O1B2?平面A1A2B2B1,O1O2?O1B2?O1,
所以CM?平面A1A2B2B1.
又?B2O1C?30?,则点C到平面A1A2B2B1的距离CM?1 2所以四棱锥C?A1A2B2B1的体积VC?A1A2B2B1?1113????2?4??3? 3222综上,当三棱锥C?A1DA2体积取最大值时, 多面体CDA1A2B2B1的体积V?VC?A1DA2?VC?A1A2B2B1?20. 解:?1?抛物线C:x?4y,点F?0,1?,
2113 6由题意知直线l的斜率存在, 设直线l:y?kx?1,
代入抛物线方程x?4y,可得x?4kx?4?0, 设点A?x1,y1?,B?x2,y2?, 因为V?0,
所以x1?x2?4k,x1x2??4, 因为AF??BF, 所以x1???x2,
又x2?1????4k,??x2??4,
222?1???2可得k?4?21?1??????2? 4???1 8当??2时,k2? 14
所以k?22或k??
44121x,y'?x 421则直线AP:y?y1?x1?x?x1?,
21又y1?x12,
411所以直线AP:y?x1x?x12
2411同理可得直线BP:y?x2x?x22
24?2?对y?所以点P?因此
?x1?x2x1x2?,?,即P?2k,?1? 4??2uuuruuurFP??2k,?2?,AB?(x2?x1,y2?y1),
综上,FP.AB=0.
uuuruuur??x?x??1FP?AB?2k?x2?x1??2?y2?y1??2k?x2?x1???x22?x12???x2?x1??2k?21??0 22??uuuruuurFP?AB?0
221. 解: ?1?f?x??lnx?2x?x的定义域为(0,??),
1?2ax2?2x?1f??x???2?2x?
xx令f??x??0,得x1?1?31?3,x2? (舍). 22?1?3??当x??0,???时,f?x??0, 2??当x???1?3?,????2?时,f'?x??0,
???1?3??1?3?所以f?x?在?0,???上单调递增,在??2,????上单调递减, 2?????1?3??1?3?0,,??因此,函数f?x?的单调增区间为?????,单调减区间为??2? 2?????2?g?x??lnx?2x?x2?3cosx,
15
当x??0,1?时,g??x??1?2?2x?sinx单调递增, x因为f??x??1?2?2x单调递减 x所以g'?x??1?2?2?0?1,g?x?在(0,??)上单调递增, 又g?1??1?cos1?0,
1111?1?g???ln???cos?0
42164?4?所以存在唯一x1??0,1?,使得g?x1??0. 当x??1,11????gx??2?2x?sinxg\x???2?cosx?0, 时,,?????2xx?2?所以g'?x?单调递减, 又g?????2???2???1?0 ?2??所以g'?x??0,
???g?x?在x??1,?上单调递增。
?2?因为g?1??1?cos1?0, 所以g?x??0, 故不存在零点。 当x??11???,3?时,g??x???2?2x?sinx,g\?x???2?2?cosx?0,,
xx?2?所以g'?x?单调递减, 又g??1?????0g2??2?4?sin2?0, ,???22?????,2? ?2?所以存在x0??使得g'?x0??0.
16