??t?2t??a2, 0?x??,??0?x????t?t0, x?0,??0 (7-1) ???t??q0, x?0??x??t?t, x??,??00?引入过余温度,即??t?t0,则上述问题转化为
????2??a2, 0?x??,??0????x????0, x?0,??0 (7-2) ??????q0, x?0??x????0, x??,??0?对上式作拉氏变换得
?d2??s??a2, 0?x??dx??d?q0?? (7-3) ?dx?s????0, x????解得
??查拉氏变换得
q0a?sexp(?x?32s) (7-4) a?x2q0a?x?x???????(x,?)?2exp??erfc?? (7-5) ??????a?2a?????4??a?x?故
?x2q0a?x?x??????t?t0?2exp??erfc???? (7-6) ????a?2a?????x??4??a
5.对非齐次边界条件的二维无内热源常物性稳态导热体 ,可以采用叠加法进行求解。试写出如图3所示问题的数学模型,并采用上述方法进行求解。 解:该问题的数学描述为
??2t?2t??0??x2?y2?x?a, t?ta1??x??a, t?ta2? (8-1) y?b, t?ta3??y??b, t?ta4???令x'?x?a,y'?y?b,则上述问题可转化为
??2t?2t??0??x?2?y?2?x??2a, t?ta1??x??0, t?ta2? (8-2) y??2b, t?ta3??y??0, t?ta4???令t = t1+ t2+ t3+ t4,t1,t2,t3和t4分别是以下定解问题的解
?2t?2t??0?x?2?y?2x??2a, t1?0x??0, t1?0?????? (8-3)
y??2b, t1?0??y??0, t1?ta4????2t?2t??0?x?2?y?2x??2a, t2?0x??0, t2?0?????? (8-4)
y??2b, t2?ta3??y??0, t2?0?????2t?2t??0??x?2?y?2?x??2a, t3?0??x??0, t3?ta2? (8-5) y??2b, t3?0??y??0, t3?0???用分离变量法求解各个方程组,结果如下
??2t?2t??0??x?2?y?2?x??2a, t4?ta1??x??0, t4?0? (8-6) y??2b, t4?0??y??0, t4?0???1?sh[m?(2b?y')/2a]?m??2ata4方程组(8-3)的解为:t1??sin?x'?(1?cosm?)
am?1sh(m?b/a)?2a?m?1?sh(m?y'/2a)?m??2ata3方程组(8-4)的解为:t2??sin?x'?(1?cosm?)
am?1sh(m?b/a)?2a?m?
1?sh[m?(2a?x')/2b]?m??2ata2?m?b?方程组(8-5)的解为:t3??sin?y'?1?cos??
bm?1sh(m?a/b)a??2b?m??1?sh(m?x'/2b)?m??2ata1?m?b?方程组(8-6)的解为:t4??sin?y'?1?cos??
bm?1sh(m?a/b)a??2b?m??因t = t1+ t2+ t3+ t4 故该问题的解为
1?sh[m?(2b?y')/2a]?m??2ata4t(x',y')??sin?x'?(1?cosm?)?am?1sh(m?b/a)?2a?m?1?sh(m?y'/2a)?m??2ata3 ?sin?x'?(1?cosm?)?am?1sh(m?b/a)?2a?m?1sh[m?(2a?x')/2b]?m??2ata2?m?b?siny'1?cos?sh(m?a/b)?????bm?12bm?a????1?sh(m?x'/2b)m?b??m??2ata1? ?sin?y'?1?cos??bm?1sh(m?a/b)a??2b?m???
?r046. 试证明:圆管内充分发展流动的体积流量可表示为: V??pi?p0?
8?L
7.分析讨论室内与外界通过玻璃窗的热交换过程。