宜春市2017~2018学年第二学期期末统考
高一年级数学试卷参考答案
一.选择题(每小题5分,共60分) 2 3 4 5 题号 1 答案 C A B A B 二.填空题(每小题5分,共20分)
16 D 7 B 8 C 9 C 10 D 11 D 12 B 13.314.9115.-416.[-1,1]
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选做题,考生根据要求作答。 17.(10分)设射中10环,9环,8环、7环分别为事件A,B,C,D (1)P(E)=P(A)+P(D)=0.21+0.25=0.46
∴P(E)=0.46
.....................................................................................................................5分(2)P(F)?1-P(A?B?C?D)=1-[P(A)?P(B)?P(C)?P(D)])
=1-(0.21+0.23+0.25+0.28)=1-0.97=0.03
∴P(F)=0.03
.................................................................................................................................10分18.(12分)解:(1)向量AB??cos?,1?, AC???1?,sin???2?
因为AB?AC ,所以ABAC ?11cos??sin??0,所以tan???. 22..........................2分
?1?4?????14sin??cos?4tan??11?2????.所以原式=2sin??3cos?2tan??34...........................................6分?1?2?????3?2?
(3)因为AB∥AC,所以cos?sin??1?11?0,即sin?cos??, 22..............................8分
?(sin??cos?)2?1?2sin?cos??2.?2sin(?????(0,),?sin??cos??2.
2?4)=sin?+cos??2......................................................................................12分
19.(12分)解:(1)由题意可知,样本容量 y?5?0.010,
50?10.................................................2分
x?0.100?0.004?0.010?0.016?0.030?0.040.
......................................................................2分
因为?0.016?0.030??10?0.46?0.5所以学生分数的中位数在70,80?内, 设中位数为a, ?0.016?0.030??10?0.04??a?70??0.5,得a?71.
................................6分
?(2)由题意可知,分数在60,70?内的职员有3人,分数在70,80?内的职员有4人,记这4人分别为a1,a2,a3,a4,分数在80,90?内的职员有1人,记为b,抽取2名职员的所有情况有10种,分别为:
????a1,a2?,?a1,a3?,?a1,a4?,?a1,b??a2,a3?,?a2,a4?,?a2,b?,?a3,a4?,?a3,b?,?a4,b?,.
2人中恰有一人在80,90?内的基本事件有4种, ∴所抽取的2人中恰有一人得分在80,90?内的概率P???42=. 105.............................................12分
20. (1)由题点Q是角
2?的终边与单位圆的交点, 3, ∴Q(cos2?2?1,sin),即Q(-,3323 ),
2................................................................4分
(2)由题f(?)?cos2??sin?,??(0,即f(?)??2sin2?2)
??sin??1.
.........................................................................................................6分
1sin??(0,1),?sin??时,f(?)最大.4.........................................................................................7分
易得cos??15.4...................................................................................................................8分
157,cos2??1-2sin2?=.88
此时sin2??2sin?cos?=715即Q(,).88............................................................................................................................12分
21.(12分)解(1)令n??x,y?,∴m·n?x?y??1,cos3?mn??4mn?1x2?y2?x2?y2?1
x?y??1x??1x?0或{,∴n???1,0?或n??0,?1?, ?{2?{x?y2?1y?0y??1.................................6分 (2)∵q?n?q?n?q?n?n???1,0?,而A?C?2B?B?
...............................................................................8分
............................................................................9分
?3,
C??n?p??2cos2?1,cosA???cosC,cosA?,
2??∴n?p?cos2C?cos2A
....................................................................................................10分
?4?1?cos???2A?1?cos2A?3?,
?而cos2A?cos2C?22∴n?p?1?sin?2A?
22.(12分)解:(1)经过整理化简得f(x)?3sin(2?x?BC=2,所以,函数f(x)的周期T=4,即
12?????25??2?n?p?,,∵,∴. A?0,??????? 6??3??22?................12分
?6),由于正三角形ABC的高为3,则2??=4,得?=. 2?4.....................................................2分
?f(x)?3sin(令2k????2??2x?)26
?x??6?2k??3?,k?Z,2
得单调减区间为[4k?28,4k?],k?Z, 33...........................................4分
(2)由(1)得f(x)?3sin(?x?)
26?因为f?x0?? 即sin???x043??x??43 ,由(1)得f?x0??3sin?0???,56?5?2????2?x0?????442, 由?x?(?,),知????,?, 0?6?53326?22?2?x0??3?4???1??所以cos?. ???2?6?5...........................................5分?5??1???x0?????x0???x??故f? 3sin???3sin[???] ?0????2?46?6?4??2?2?4?232???x????x??? ?3[sin?0??cos?cos?0??sin]?3???????6?46?4?2?2?5252??76. 10.......................................................................................................................8分
(3)由不等式可转化为
2sin2(?x?)-1?ksin(x?)?k?1, 2626????2sin2(?x?)-2?ksin(x?)?k?2[sin2(x?)-1]?k[sin(x?)?1]26262626
???????x??-2,0?,?sin(?2[sin(??1??x?)?[?1,]?sin(x?)-1?0.26226
?x?)+1]?k26
?∴要使原不等式恒成立,?2[sin(易得2[sin(
?x?)+1]min?k 26?x?)+1]min=026
?k?0.
??
.........................................................................................................12分