微积分习题库答案 下载本文

习题12—6

1.(1)

13?; 3(2)3.

149?; 30(3)

111?。 102.461。

33?(3?1)ln2。 24. ?a3。

第十三章

习题13—1

1111.(?1,1,?1)与(?,,)。

39?27x?1y?0z?12.切线方程:;法平面方程:x?y?z?2?0。 ??1113.X(t)?(Qcost?Psint)?R?c1t?c2,其中,c1,c2为任意常矢量。

5.s??a2k。

习题13—2

(1)场所在空间区域是除去平面Ax?By?Cz?D?0以外的全部空间,场的等值面

1?C1是平面Ax?By?Cz?D?0平行的一族平面,Ax?By?Cz?D?1?0;

Ax?By?Cz?DC1(2)场所在区域是坐标满足z2?x2?y2及x2?y2?0的点组成的空间部分,场的等值面为z2?(x2?y2)sin2c,是顶点的坐标原点的一族圆锥面(但不含原点)。

2.过M的等值面是族转抛物面z?x2?y2。 3.等值面为:(x?a)2?(y?b)2?(z?c)2?e?2。

习题13—3

11173. (1); (2); (3)

12330114.0. 5. ??a2。 6. . 7. 13.

35P?2xQ?3yRP(x,y)?2xQ(x,y)dl。 8.9. dl。

222LL1?4x?9y1?4x

1.

56。 ?152. ?8。 (4)?1。 20??经济学院学生会学习小组

25

习题13—4

1.

??Dydxdy。

22. ?2?ab. 3. I??a2m8. 4.

32?a. 83。 8. I?62. 21111.(1)x2?2xy?y2; (2)x2y; (3)?cos2xsin3y;

22 (4)x3y?4x2y2?12ey?12yey; (5)y2sinx?x2cosy。

7.I??习题13—5

21.?a3bc。

52.

2?7R. 105 3. 1.

4.(1)

??S3223(P?Q?R)dS; (2)555??S2xP?2yQ?R1?4x?4y22dS。

习题13—6

2121.(1)?2?a(a?b); (2)9?。 2. (1)a3?a4?a5; (2)4?R3; (3)?a3。

35

习题13—7

1.

?u?l?M2214。

213?262.在M1与M2处的梯度依次为7与35;方向斜弦依次为,,,,?与

777550。梯度为0的点是(?2,1,1)。

习题13—8

1.(1)0; (2)0。 2. (1)6。 (2)8; (3)36。

习题13—9

1.(1)2?R2, (2)2?R2。 2. rotA(1,3,2)??i?3j?4k. ??Q?P?3.rotA(x,y,0)????x??y??k.

??

经济学院学生会学习小组

26

第四十章

习题14—1

1.发散。

2. 收敛。

3. 发散。

4. 收敛。

习题14—2

1.(1)收敛; (2)发散; (3)发散; (4)收敛; (5)发散; (6)收敛。

习题14—2

1.(1)发散; (2)收敛; (3)收敛; (4)收敛。 (5)a?1时,收敛0?a?1,发散; (6)发散。 2.(1)收敛; (2)收敛; (3)收敛; (4)收敛; (5)收敛; (6)收敛。 3.(1)收敛; (2)收敛; (3)收敛; (4)收敛; (5)b?a时,收敛;b?a时发散。

4.(1)发散; (2)发散; (3)发散; (4)收敛; (5)收敛。

习题14—4

1.条件收敛。 2. 条件收敛. 3. 绝对收敛。

4. 发散。

5. 绝对收敛。

第十五章

习题15—2

1(1)(?1,1); (2){0}; (5)[4,6); (6)(0,2];

(3)[?1,1]; ?1?(7)?,e?;

?e?(4)[?3,3); (8)R。

11?x12.(1)ln?arctanx?x(?1?x?1);

41?x211 (2) (3)(?1?x?1);(?1?x?1)。

(x?1)2(1?x)311?x3.ln(?1?x?1),

21?x?12?ln1(?2)。 n2(2n?1)2n?1?

经济学院学生会学习小组

27

习题15—3

1.(1)e?x2(?1)n2n?xn!n?0???(x?R)

(x?R);

11??(?4)n2n(2)cosx??x22n?0(2n)!2?(?1)n4n(3)cosx?x(2n)!n?02???(x?R);

x10(4)?1?x?xn?0??x?10(?1?x?1);

??x1(5)?[1?(?2)n]xn23n?01?x?2x???(?11?x?); 22x3n?2nn(6)2?xx?5x?6n?06n???(?2?x?2);

(?1?x?1);

(7)(8)

?xarctant0t(?1)ndt?22n?1n?0(2n?1)x?1?t41?3?5131?3?5?7 ?x?x17??(?1?x?1);

13?2?4?617?2?4?6?80?xdt?x?151?39x?x 5?29?2?41?x??1?2(?1)nxn(9)1?xn?0???(?1?x?1)。

(x?R)。

?(?1)nx2n(?1)n3x2n?1??2. f(x)???2(2n)!2(2n?1)!??n?0?????1(?1)n(x?4)n3.f(x)??3n?03n???(1?x?7)。 (?4?x?0)。

(x?2)2n(?1)4.f(x)?4n?1n?0

???n习题15—4

1.3.9563

2. 0.1564。 3. 0.4940。 4. 0.2603

经济学院学生会学习小组

28