浙教版数学九年级上册第3章 圆的基本性质单元测评卷 下载本文

-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------

∴四边形AOBC是菱形, ∴AB平分∠OAC; (2)解:连接OC, ∵C为弧AB中点,∠AOB=120°, ∴∠AOC=60°, ∵OA=OC, ∴OAC是等边三角形, ∵OA=AC, ∴AP=AC, ∴∠APC=30°, ∴△OPC是直角三角形, ∴. 点评: 本题考查了圆心角、弧、弦之间的关系,勾股定理,等边三角形的性质和判定的应用,主要考查学生运用定理进行推理和计算的能力,题目比较典型,难度适中.

23.如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为AD上一点,连接BE,CE. (1)求证:BE=CE;

(2)以点E为圆心,ED长为半径画弧,分别交BE,CE于点F,G.若BC=4,∠EBD=30°,求图中阴影部分(扇形)的面积.

信达

-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------

考点: 全等三角形的判定与性质;等边三角形的性质;扇形面积的计算. 专题: 证明题. 分析: (1)由点D是线段BC的中点得到BD=CD,再由AB=AC=BC可判断△ABC为等边三角形,于是得到AD为BC的垂直平分线,根据线段垂直平分线的性质得BE=CE; (2)由EB=EC,根据等腰三角形的性质得∠EBC=∠ECB=30°,则根据三角形内角和定理计算得∠BEC=120°,在Rt△BDE中,BD=BC=2,∠EBD=30°,根据含30°的直角三角形三边的关系得到ED=然后根据扇形的面积公式求解. 解答: (1)证明:∵点D是线段BC的中点, ∴BD=CD, ∵AB=AC=BC, ∴△ABC为等边三角形, ∴AD为BC的垂直平分线, ∴BE=CE; (2)解:∵EB=EC, ∴∠EBC=∠ECB=30°, ∴∠BEC=120°, 在Rt△BDE中,BD=BC=2,∠EBD=30°, ∴ED=BD?tan30°=BD=, BD=,∴阴影部分(扇形)的面积==π. 点评: 本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.也考查了等边三角形的判定与性质、相等垂直平分线的性质以及扇形的面积公式.

24.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E. (1)若∠B=70°,求∠CAD的度数; (2)若AB=4,AC=3,求DE的长.

信达

-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------

考点: 圆周角定理;平行线的性质;三角形中位线定理. 分析: (1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得; (2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得. 解答: 解:(1)∵AB是半圆O的直径, ∴∠ACB=90°, 又∵OD∥BC, ∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°. ∵OA=OD, ∴∠DAO=∠ADO===55° ∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°; (2)在直角△ABC中,BC=∵OE⊥AC, ∴AE=EC, 又∵OA=OB, ∴OE=BC=. ==. 又∵OD=AB=2, ∴DE=OD﹣OE=2﹣. 点评: 本题考查了圆周角定理以及三角形的中位线定理,正确证明OE是△ABC的中位线是关键.

25.已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.

信达

-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------

(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长; (Ⅱ)如图②,若∠CAB=60°,求BD的长.

考点: 圆周角定理;等边三角形的判定与性质;勾股定理. 分析: (Ⅰ)利用圆周角定理可以判定△CAB和△DCB是直角三角形,利用勾股定理可以求得AC的长度;利用圆心角、弧、弦的关系推知△DCB也是等腰三角形,所以利用勾股定理同样得到BD=CD=5; (Ⅱ)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5. 解答: 解:(Ⅰ)如图①,∵BC是⊙O的直径, ∴∠CAB=∠BDC=90°. ∵在直角△CAB中,BC=10,AB=6, ∴由勾股定理得到:AC=∵AD平分∠CAB, ∴=, ==8. ∴CD=BD. 在直角△BDC中,BC=10,CD+BD=BC, ∴易求BD=CD=5 (Ⅱ)如图②,连接OB,OD. ∵AD平分∠CAB,且∠CAB=60°, ∴∠DAB=∠CAB=30°, ∴∠DOB=2∠DAB=60°. 又∵OB=OD, ∴△OBD是等边三角形, ∴BD=OB=OD. ∵⊙O的直径为10,则OB=5, 信达

222;