¾« Æ· ÎÄ µµ
(¶þ)Ñ¡¿¼Ì⣺¹²10·Ö¡£Ç뿼ÉúÔÚµÚ22¡¢23Á½ÌâÖÐÈÎѡһÌâ×ö´ð£¬Èç¹û¶à×ö£®Ôò°´Ëù×öµÄµÚÒ»Ìâ¼Ç·Ö¡£
22£®[Ñ¡ÐÞ4£4£º×ø±êϵÓë²ÎÊý·½³Ì](10·Ö)
?2x?3?t??2ÔÚÖ±½Ç×ø±êϵxoyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ?£¨tΪ²ÎÊý£©£¬ÔÚ¼«×ø±êϵ£¨Óë
2?y?5?t?2?Ö±½Ç×ø±êϵxoyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔµãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬Ô²CµÄ·½³ÌΪ??25sin?£®
£¨1£©ÇóÔ²CµÄÖ±½Ç×ø±ê·½³Ì£»
11?£® PAPB£¨2£©ÉèÔ²CÓëÖ±Ïßl½»ÓÚµãA¡¢B£¬ÈôµãPµÄ×ø±êΪ(3£¬5)£¬Çó23£®[Ñ¡ÐÞ4£5£º²»µÈʽѡ½²]
a4?b4?c4ÒÑÖªa>0£¬b>0£¬c>0£¬ÇóÖ¤£º?a?b?c. abcÊÔ ¾í
¾« Æ· ÎÄ µµ
Òø´¨Ò»ÖÐ2019½ì¸ßÈýµÚÈý´ÎÔ¿¼Êýѧ£¨ÎĿƣ©ÊÔÌâ²Î¿¼´ð°¸
Ò»£®Ñ¡ÔñÌâ ÌâºÅ ´ð°¸ 1 D 2 D 3 C 4 C 5 A 6 A 7 C 8 B 9 D 10 C 11 D 12 D ¶þ£®Ìî¿ÕÌâ
113. £¨0£¬2£© 14.3 15.8 16.£¨-?£¬2] Èý¡¢½â´ðÌ⣺
17.½â ¡÷PABÖУ¬¡ÏAPB£½180¡ã)£½45¡ã£(75¡ã£«60¡ã£¬
AP100
ÓÉÕýÏÒ¶¨ÀíµÃsin60¡ã£½sin45¡ã?AP£½506. ¡÷QABÖУ¬¡ÏABQ£½90¡ã£¬
¡àAQ£½1002£¬¡ÏPAQ£½75¡ã£45¡ã£½30¡ã£¬
222
506¡Á1002cos30¡ãÓÉÓàÏÒ¶¨ÀíµÃPQ£½(506)£«(1002)£2¡Á£½5000£¬
¡àPQ£½5000£½502.
Òò´Ë£¬P£¬QÁ½¿ÃÊ÷Ö®¼äµÄ¾àÀëΪ502 m£¬A£¬PÁ½¿ÃÊ÷Ö®¼äµÄ¾àÀëΪ506 m. 18.½â (1)ÓÉan£«1£½2Sn£«1£¬¿ÉµÃan£½2Sn£1£«1(n¡Ý2)£¬Á½Ê½Ïà¼õµÃan£«1£an£½2an£¬Ôòan£«1£½3an(n¡Ý2)£®
ÓÖa2£½2S1£«1£½3£¬¡àa2£½3a1.
¹Ê{an}ÊÇÊ×ÏîΪ1£¬¹«±ÈΪ3µÄµÈ±ÈÊýÁУ¬¡àan£½3(2)Éè{bn}µÄ¹«²îΪd.
ÓÉT3£½15£¬¼´b1£«b2£«b3£½15£¬¿ÉµÃb2£½5£¬ ¹Êb1£½5£d£¬b3£½5£«d£¬ÓÖa1£½1£¬a2£½3£¬a3£½9£¬
n£1
.
ÊÔ ¾í
¾« Æ· ÎÄ µµ
(5£«d£«9)£½(5£«3)£¬½âµÃd£½2»òdÓÉa1£«b1£¬a2£«b2£¬a3£«b3³ÉµÈ±ÈÊýÁпɵÃ(5£d£«1)¡¤£½£10.
¡ßµÈ²îÊýÁÐ{bn}µÄ¸÷ÏîΪÕý£¬¡àd>0£¬
n(n£1)
2£½n2£«2n. ¡àd£½2£¬b1£½3£¬¡àTn£½3n£«2¡Á
19.½â (1)Ö¤Ã÷£º¹ýµãC×÷CM¡ÍAB£¬´¹×ãΪM£¬ÒòΪAD¡ÍDC£¬
ËùÒÔËıßÐÎADCMΪ¾ØÐΣ¬ËùÒÔAM£½MB£½2£¬
ÓÖAD£½2£¬AB£½4£¬ËùÒÔAC£½22£¬CM£½2£¬BC£½22£¬
ËùÒÔAC2£«BC2£½AB2£¬ËùÒÔAC¡ÍBC£¬ÒòΪAF¡ÍÆ½ÃæABCD£¬AF¡ÎBE£¬ ËùÒÔBE¡ÍÆ½ÃæABCD£¬ËùÒÔBE¡ÍAC.
ÓÖBE?Æ½ÃæBCE£¬BC?Æ½ÃæBCE£¬ÇÒBE¡ÉBC£½B£¬ ËùÒÔAC¡ÍÆ½ÃæBCE.
(2)ÒòΪAF¡ÍÆ½ÃæABCD£¬ËùÒÔAF¡ÍCM£¬ ÓÖCM¡ÍAB£¬AF?Æ½ÃæABEF£¬
AB?Æ½ÃæABEF£¬AF¡ÉAB£½A£¬ËùÒÔCM¡ÍÆ½ÃæABEF. 1118
VE£BCF£½VC£BEF£½3¡ÁBE¡ÁEF¡ÁCM£½6¡Á2¡Á4¡Á2£½3. 2¡Á
AC£½4£¬CB£½2£¬AA1£½2£¬E¡¢F·Ö±ðÊÇA1C1¡¢ÔÚÖ±ÈýÀâÖùABC£A1B1C1ÖУ¬¡ÏACB£½60¡ã£¬BCµÄÖе㣮
20.£¨¢ñ£© ¢ÙÈôÖ±Ïßl1µÄбÂʲ»´æÔÚ£¬ÔòÖ±Ïßl1£ºx£½1£¬·ûºÏÌâÒâ. ¢ÚÈôÖ±Ïßl1бÂÊ´æÔÚ£¬ÉèÖ±Ïßl1µÄ·½³ÌΪy?k(x?1)£¬¼´kx?y?k?0£®
3k?4?kk2?12
ÓÉÌâÒâÖª£¬4£© Ô²ÐÄ£¨3£¬µ½ÒÑÖªÖ±Ïßl1µÄ¾àÀëµÈÓÚ°ë¾¶2£¬¼´£ºËùÇóÖ±Ïßl1µÄ·½³ÌÊÇx?1»ò3x?4y?3?0.
ÊÔ ¾í
?2£¬½âÖ®µÃ k?3. 4¾« Æ· ÎÄ µµ
(¢ò) Ö±ÏßÓëÔ²Ïཻ£¬Ð±Âʱض¨´æÔÚ£¬ÇÒ²»Îª0, ÉèÖ±Ïß·½³ÌΪkx?y?k?0£¬
ÔòÔ²Ðĵ½Ö±Ïßl1µÄ¾àÀë d?2k?41?k2 yl1QMP1A1x ÓÖ¡ß¡÷CPQµÄÃæ»ý S?1d?24?d2?d4?d2 2C £½4d2?d4??(d2?2)2?4 O ¡àµ±d£½2ʱ£¬SÈ¡µÃ×î´óÖµ2. ¡àd?2k?41?k2£½2 ¡à k£½1 »òk£½7
ËùÇóÖ±Ïßl1·½³ÌΪ x£y£1£½0»ò7x£y£7£½0 .
21.½â£º£¨1£©f(x)?ex?x2?a,f?(x)?ex?2x ?f(0)?1?a?0?a??1 ÓÉÒÑÖª?½âµÃ?£¬¹Êf(x)?ex?x2?1 ?f?(0)?1?b?b?1£¨2£©Áîg(x)?f(x)?x2?x?ex?x?1£¬ ÓÉg?(x)?ex?1?0µÃx?0 µ±x?(??,0)ʱ£¬g?(x)?0£¬g(x)µ¥µ÷µÝ¼õ£»µ±x?(0,??)ʱ£¬g?(x)?0£¬g(x)µ¥µ÷µÝÔö
¡àg(x)min?g(0)?0£¬´Ó¶øf(x)??x2?x f(x)?k¶ÔÈÎÒâµÄx?(0,??)ºã³ÉÁ¢ x£¨3£©f(x)?kx¶ÔÈÎÒâµÄx?(0,??)ºã³ÉÁ¢?Áî
f(x)xf?(x)?f(x)x(ex?2x)?(ex?x2?1)(x?1)(ex?x?1)g(x)?,x?0,¡àg'(x)??? xx2x2x2ÊÔ ¾í