地面沉降 - 图文 下载本文

第四章 地面沉降、滑坡、岩溶塌陷灾害与防治

4.1 地面沉降灾害防治

一、地面沉降的定义:指地层在各种因素的作用下,造成地层压密变形或下沉,从而引起区域性的地面标高下降。 二、地面沉降的原因:

(1)自然因素:①新构造运动以及地震、火山活动引起的地面沉降;②海平面上升导致地面的相对下降(沿海);③土层的天然固结(次固结土在自重压密下的固结作用)。

自然因素所形成的地面沉降范围大,速率小。自然因素主要是构造升降运动以及地震、火山活动等一般情况下,把自然因素引起的地而沉降归属于地壳形变或钩造运动的范畴,作为一种自然动力现象加以研究。

(2)人为因素:①抽汲地下气、液体引起的地面沉降。抽取地下水而引起的地面沉降,是地面沉降现象中发育最普通、危害性最严重的一类;②大面积地面堆载引起的地面沉降;③大范围密集建筑群天然地基或桩基持力层大面积整体性沉降——工程性地面沉降。

人为因素引起的地面沉降一般范围较小,但速率和幅度比较大。人为因素主要是开采地下水和油气资源以及局部性增加荷载。将人为因素引起的地面沉降归属于地质灾害现象进行研究和防治。

三、地面沉降的成因机制和形成条件 (一)地面沉降的成因机制

由于地面沉降的影响巨大,因此早就引起了各国政府和研究人员的密切注意。早期研究者曾提出一些不同的观点,如新构造运功说、地层收缩说和自然压缩说、地面动静荷载说、区域性海平面上升说等。大量的研究证明,过量开采地下水是地面沉降的外部原因,中等、高压缩性粘土层和承压含水层的存在则是地面沉降的内因。因而多数人认为沉降是由于过量开采地下水、石油和天然气、卤水以及高大建筑物的超量荷载等引起的。

在孔隙水承压含水层中,抽取地下水所引起的承压水位的降低,必然要使含水层本身及其上、下相对隔水层中的孔隙水压力随之而减小。根据有效应力原理可知,土中由覆盖层荷载引起的总应力是山孔隙中的水和土颗粒骨架共同承担的。由水承担的部分称为孔隙水压力(pw),它不能引起土层的压密,故义称为中性压力;而由土颗粒骨架承担的部分能够直接造成上层的压密,故称为有效应力(ps);二者之和等干总应力。假定抽水过程中土层内部应力不变,那么孔隙水压力的减小必然导致十中有效应力等量增大,结果就会引起孔隙体积减小,从而使土层压缩。

由于透水性能的显著差异,上述孔隙水压力减小、有效应力增大的过程,在妙层和粘土

层中是截然不同的。在砂层中,随着承压水头降低和多余水分的排出,有效应力迅速增至与承压水位降低后相平衡的程度,所以砂法压密是“瞬时”完成的。在粘性土层中,压密过程进行得十分缓慢,往往需要几个月、几年甚至几十年的时间;因而直到应力转变过程最终完成之前,粘土层中始终存在有超孔隙水压力(或称剩余孔隙水压力)。它是衡量该土层在现存应力条件下最终固结压密程度的重要指标。

相对而言,在较低应力下砂层的压缩性小且主要是弹性、可逆的,而粘土层的压缩性则大得多且主要是非弹性的水久变形。因此,在较低的有效应力增长条件下,粘性土层的压密在地面沉降中起主要作用,而在水位回升过程中,砂层的澎胀回弹则具有决定意义。

此外,土层的压缩量还与丘层的预固结应力(即先期固结应力)、土层的应力—应变性状有关。由于抽取地下水量不等而表现出来的地下水位变化类型和特点也对土层压缩产生一定的影响。

(三)地面沉降的产生条件

从地质条件,尤其是水文地质条件来看,疏松的多层含水层休系、水量丰富的承压含水层、开采层影响范围内正常固结或欠固结的可压缩险厚层粘比土层等的存在,都有助于地面沉降的形成。从土层内的应力转变条件来看,承压水位大幅度波动式的持续降低是造成范围不断扩大累进性应力转变的必要前提。

1. 厚层松散细粒土层的存在

地面沉降主要是抽采地下流体引起土层压缩而引起的,厚层松散细粒土层的存在则构成了地面沉降的物质基础。在广大的平原、山前倾斜干原、山间河谷盆地、滨海地区及河口三角洲等地区分布有很厚的第四系和上第三系松散或未固结的沉积物,因此,地面沉降多发生干这些地区。如在滨海三角洲平原,第四纪地层中含有比较厚的淤泥质粘土,呈软塑状态或流动状态。这此淤泥质粘性粘的含水量可高达60%以上,孔隙比大、强度低、压缩除强,易于发生塑注流变。当大量抽取地下水时,含水层中地下水压力降低,淤泥质粘土隔水层孔隙中的弱结合水压力差加大,使孔隙水流入含水层有效压力加大,结果发生粘性十层的压缩变形。

易于发生地面沉降的地质结构为砂层、粘土层互层的松散土层结构。随着抽取地下水,承压水位降低,含水层本身及其土、下相对隔水层中孔隙水压力减小,地层压缩导致池面发生沉降。

2. 长期过量开采地下流体

未抽取地下水时,粘性土隔水层或弱隔水层中的水压力与含水层中的水压力处干平衡状态。抽水过程中,由J含水层的水头降低,上、下隔水层中的孔隙水压力较高,因而向含水层排出部分孔隙水结果使土、下隔水层的水压力降低。在上覆土体压力不变的情况下,粘土层的有效应力加大,地层受到压缩,孔隙体积减小。这就是粘土层的压缩过程。

由于抽取地下水,在井孔周围形成水位下降漏斗,承压含水层的水压力下降,即支撑上

覆岩层的孔隙水压力减小,这部分压力转移到含水层的颗粒上。因此,含水层因有效应力加大而受压缩,孔隙体积减小,排出部分孔隙水。这就是含水层压缩的机理。

地面沉降与地丁水开采量和动态变化有着密切联系: (1)地面沉降中心与地下水开采漏斗中心区呈明显一致性。 (2)地面沉降区与地下水集中开采区域大体相吻合。

(3)地面沉降量等佰线展布方向与地下水开采漏斗等值线展布方向基本一致,地面沉降的速率与地下液体的开采量和开采速率有良好的对应关系。

(4)地面沉降量及各单层的压密量与承压水位的变化密切相关。

(5)许多地区已经通过人工回灌或限制地下水的开采来灰复和抬高地下水位的办法,控制了地面沉降的发展,有些地区还使地面有所回升。这就更进一步证实了地面沉降与开采地下液体引起水位或液体沉降之间的成因联系。

3. 新构造运动的影响

平原、河谷盆地等低洼地貌单儿多是新构造运动的下降区,因此,由新构造运动引起的区域性下沉对地面沉降的持续发展也具有一定的影响。

西安地面沉降区位行西安断陷区的东缘,由于长期下沉,新生界累计厚度已经超过3000m 。1970~1987年,渭河盆地大地水准测量表明,西安的断陷活动仍在继续,在北部边界渭河断裂及东有部边界临渝——长安断裂测得的平均活功速率分别为3.37m m/a和3.98mm/a, 构造下沉约占同期各沉降中合部位沉降速率的3.1%~7%左右。

4. 城市建设对地面沉降的影响

相对于抽采地下流体和构造运动引起的地面下沉,城市建设造成的地面沉降是局部的,有时也是不可逆转的。

城市建设按施工对地基的影响方式可分为:(ⅰ)以水平方向为主和(ⅱ)以垂直方向为主的两种类型。前者以重大市政工程为代表,如地铁、隧道、给排水工程、道路改扩建等,利用开挖或盾构掘进,并铺设各神市政管线。后者以高层建筑基础工程为代表,如基坑开挖、降排水、沉桩等。沉降效应较为明显的工程措施有开挖、降排水、盾构掘进、沉桩等(龚士良,1998)。

若揭露有流沙陀质的饱水砂层或具流变特性的饱和淤泥质软土,在开挖深度和面积较大的基坑时则有可能造成支护结构失稳,从而导致基坑周边地区地面沉降。而规模较大的隧道、涵洞的开挖有时具有更显著的沉降效应。降排水常作为基坑等开挖工程的配套工程措施,旨在预先疏干作业面渗水,其机理与抽取地下水引发地面沉降一致。

城建施工造成的沉降与工程施工进度密切相关,沉降主要集中于浅部工程活动相对频繁和集中的地层中,与开采地下水引起的沉降主要发生在深部含水砂层有根本区别。

地壳沉降活动、松散沉积物的自然固结、人类开采地下水或油气资源引起的土层压缩等因素都会引起地面沉降,但从灾害研究角度而言的地面沉降是指人类活动引起的地面沉降,

或者是以人类活功为主、自然动力为辅而引起的地面沉降。地面沉降的形成条件主要包括两个方面:

(l)一是地面沉降的地质条件,即具有较高压缩性的厚层松散沉积物。

(2)地面沉降的动力条件,如人类长期过量开采地下水和地下沼气资源等。四、抽水作用下引起地面沉降机理

因抽水而引起地面沉降的地区,地层主要由各含水层及其相对隔水的粘性土层相叠组成,各层间在一定的水压下有着水力联系,抽水使含水层的水头(或水位)下降,并牵动相关的水头下降,导致孔隙水压力减小,有效应力增加。有效应力的增加,等同于给土层施加一附加压应力,使土层产生压缩变形,各土层的变形迭加,导致地面的整体下沉。 五、地面沉降的特征与分布

(一)地面沉降的特征

地面沉降是指某一区域内由于开采地下水或其他地下流体导致的地表浅部松散沉积物压实或压密引起的地面标高下降的现象,又称做地面下沉或地陷。地面沉降的特点是波及范围广,下沉速率缓慢,往往不易察觉,但已对于建筑物、城市建设和农田水利危害极大。

地而沉降灾害在全球各地均有发生。由于工农业生产的发展、人口的剧增以及城市规模的扩大,大量抽取地下水引起了强烈的地面沉降,特别是在大型沉积盆地和沿海平原地区,地面沉降灾害更加严重。石油,天然气的开采也可造成大规模的地面沉降灾害。 (二)地面沉降的分布规律 1. 世界地面沉降分布概况

地画沉降主要发生于平系和内陆盆地工业发达的城市以及油气田开采区。如美国内华达川的拉斯韦加斯市,自1905年开始抽取地下水,由于地下水位持续下降地面沉降影响面积已达1030k㎡,累计沉降幅度在沉降中心区已达1.5m,并使井口超出地面1.5m;同时还伴生了广泛的地裂缝,其长度和深度均达几十米。

日本在20世纪50~80年代,地面沉降已遍及全国的50多个城市和地区。东京地区的地面沉降范围达1000多平方公里,最大沉降量达到4. 6m,部分地区甚至降到了海平面以下。开采石油也造成了严重的地面沉降灾害。美国加利福尼亚州长滩市的威明顿油田,在1926~1968年间累汁沉降达9m,最大沉降速率为71crn/a。表7-1列举了世界上一些城市或地区的地面沉降现象。

此外,英国的伦敦市、俄罗斯的莫斯科市、匈牙利的德波勒斯市、泰国的曼谷、委内瑞拉的马拉开波湖、德冈沿海以及新西兰和丹麦等国家也都发生了不同程度的地面沉降。