∵∠EBD=∠ABC=60°, ∴在Rt△BEH中,∴EH=∵
,BH=,
,
,
∴BG=xBE,
∴AB=BC=2BG=2xBE,
∴AH=AB+BH=2xBE+BE=(2x+)BE,
∴在Rt△AHE中,tan∠EAD=,
∴y=;
②如图2,过点O作OM⊥BC于点M,
设BE=a, ∵
,
∴CG=BG=xBE=ax,
∴EC=CG+BG+BE=a+2ax, ∴EM=EC=a+ax, ∴BM=EM﹣BE=ax﹣a, ∵BF∥AG, ∴△EBF∽△EGA, ∴∵AG=∴BF=
∴△OFB的面积=∴△AEC的面积=
∵△AEC的面积是△OFB的面积的10倍, ∴
∴2x﹣7x+6=0, 解得:∴
,
,
2
, , ,
, ,
,
6.(2019?温州)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF. (1)求证:四边形DCFG是平行四边形. (2)当BE=4,CD=AB时,求⊙O的直径长.
(1)证明:连接AE, ∵∠BAC=90°, ∴CF是⊙O的直径, ∵AC=EC, ∴CF⊥AE,
∵AD是⊙O的直径, ∴∠AED=90°, 即GD⊥AE, ∴CF∥DG, ∵AD是⊙O的直径, ∴∠ACD=90°, ∴∠ACD+∠BAC=180°, ∴AB∥CD,
∴四边形DCFG是平行四边形; (2)解:由CD=AB, 设CD=3x,AB=8x, ∴CD=FG=3x, ∵∠AOF=∠COD, ∴AF=CD=3x, ∴BG=8x﹣3x﹣3x=2x, ∵GE∥CF, ∴∵BE=4, ∴AC=CE=6, ∴BC=6+4=10, ∴AB=∴x=1,
在Rt△ACF中,AF=10,AC=6, ∴CF=
=3
, . =8=8x, ,
即⊙O的直径长为3
7.(2019?嘉兴)在6×6的方格纸中,点A,B,C都在格点上,按要求画图:
(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形. (2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).
解:(1)由勾股定理得: CD=AB=CD'=AD'=BC=AD''=
,BD=AC=BD''=;
,
画出图形如图1所示; (2)如图2所示.
8.(2019?嘉兴)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展. (1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.
(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC边上,N'在△ABC内,连结BN'并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PPQMN.小波把线段BN称为“波利亚线”. (3)推理:证明图2中的四边形PQMN是正方形.
(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM=时,猜想∠QEM的度数,并尝试证明.
请帮助小波解决“温故”、“推理”、“拓展”中的问题.