故棱锥的体积V=, 故组合体的体积为:+故选:C.
【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.
6.(5分)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件
D.既不充分也不必要条件
π,
【分析】直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”?“平面α和平面β相交”,反之不成立.
【解答】解:直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”?“平面α和平面β相交”, 反之不成立.
∴“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件. 故选:A.
【点评】本题考查了空间位置关系、简易逻辑的判定方法,考查了推理能力,属于基础题.
7.(5分)已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是( ) A.内切
B.相交
C.外切
D.相离
,
【分析】根据直线与圆相交的弦长公式,求出a的值,结合两圆的位置关系进行判断即可.
【解答】解:圆的标准方程为M:x2+(y﹣a)2=a2 (a>0), 则圆心为(0,a),半径R=a, 圆心到直线x+y=0的距离d=
,
第9页(共23页)
∵圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2∴2
=2
=2
=2
,
,
即=
,即a2=4,a=2,
则圆心为M(0,2),半径R=2,
圆N:(x﹣1)2+(y﹣1)2=1的圆心为N(1,1),半径r=1, 则MN=
=
,
∵R+r=3,R﹣r=1, ∴R﹣r<MN<R+r, 即两个圆相交. 故选:B.
【点评】本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出a的值是解决本题的关键.
8.(5分)△ABC中,角A,B,C的对边分别是a,b,c,已知b=c,a2=2b2(1﹣sinA),则A=( ) A.
B.
C.
D.
【分析】利用余弦定理,建立方程关系得到1﹣cosA=1﹣sinA,即sinA=cosA,进行求解即可. 【解答】解:∵b=c,
∴a2=b2+c2﹣2bccosA=2b2﹣2b2cosA=2b2(1﹣cosA), ∵a2=2b2(1﹣sinA), ∴1﹣cosA=1﹣sinA, 则sinA=cosA,即tanA=1, 即A=
,
故选:C.
【点评】本题主要考查解三角形的应用,根据余弦定理建立方程关系是解决本题
第10页(共23页)
的关键.
9.(5分)已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=( ) A.﹣2 B.1
C.0
D.2
【分析】求得函数的周期为1,再利用当﹣1≤x≤1时,f(﹣x)=﹣f(x),得到f(1)=﹣f(﹣1),当x<0时,f(x)=x3﹣1,得到f(﹣1)=﹣2,即可得出结论.
【解答】解:∵当x>时,f(x+)=f(x﹣), ∴当x>时,f(x+1)=f(x),即周期为1. ∴f(6)=f(1),
∵当﹣1≤x≤1时,f(﹣x)=﹣f(x), ∴f(1)=﹣f(﹣1), ∵当x<0时,f(x)=x3﹣1, ∴f(﹣1)=﹣2, ∴f(1)=﹣f(﹣1)=2, ∴f(6)=2. 故选:D.
【点评】本题考查函数值的计算,考查函数的周期性,考查学生的计算能力,属于中档题.
10.(5分)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是( ) A.y=sinx B.y=lnx
C.y=ex D.y=x3
【分析】若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,进而可得答案.
【解答】解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切
第11页(共23页)
线互相垂直,
则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1, 当y=sinx时,y′=cosx,满足条件;
当y=lnx时,y′=>0恒成立,不满足条件; 当y=ex时,y′=ex>0恒成立,不满足条件; 当y=x3时,y′=3x2>0恒成立,不满足条件; 故选:A.
【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,转化思想,难度中档.
二、填空题:本大题共5小题,每小题5分,共25分.
11.(5分)执行如图的程序框图,若输入n的值为3,则输出的S的值为 1 .
【分析】根据程序框图进行模拟计算即可. 【解答】解:若输入n的值为3, 则第一次循环,S=0+第二次循环,S=第三次循环,S=
﹣1+﹣1+
﹣﹣1=
﹣1,1≥3不成立, ==
﹣1,2≥3不成立, ﹣1=2﹣1=1,3≥3成立,
程序终止,输出S=1,
第12页(共23页)