S3 1 30 S2 12 10a S1 (360-10a)/12 S0 10a
得:(360-10a)>0,10a>0,从而0< a<36。 (3分) (2)将d-1=s代入上式,得d3?9d2?9d?10a?19?0 (2分)
d3 1 9 d2 9 10a-19 d1 (81-10a+19)/9
d0 10a-19
同理得到:0.9< a<10 (3分)
自动控制原理4试题答案及评分参考
一、单项选择题(每小题 1 分,共 20 分)
1 .C 2 .C 3 .A 4 .C 5 .C 6 .D 7 .C 8 .A 9 .B 10.D 11.C 12.B 13.B 14.B 15.A 16.D 17.B 18.D 19.D 20.D 二、填空题(每空 1 分, 共 10 分)
21.数字控制系统 22.偏差信号 23.偏移程度 24.
1 22???3j?25.稳态 26.2 27.相同 28.比例 29.0.707 30.重视大的误差,忽略小的误差 五、计算题(第41、42题每小题5分,第43 、44题每小题10分,共 30 分) 41.解:
??(t)?k1?y0(t)?k2?y0(t)?Fi(t)my0(ms2?k1?D1s? (2.5分) k2D2s)Y0(s)?Fi(s)k2?D2sG(s)?42.解:
k2?D2s (2.5分) 32mD2s??mk2?D1D2?s??k1D2?k2D1?k2D2?s?k1k2G总?G1G2G3?G1G3G4?G1G2G3G4H (5分)
1?G2H?G1G2G3?G1G3G4?G1G2G3G4H43.解:
系统有一比例环节:K=10 20log10=20 (1.5分) 积分环节:1/S (1分)
惯性环节:1/(S+1) 转折频率为1/T=1 (1.5分) 20Log G(jω) 40 [-20] 20 [-40] 0 0.1 1 10 ω -20
-40 ∠G(jω) 0 0.1 1 10 ω -450 -900 -1350 -1800
直接画出叠加后的对数幅频图(3分) 直接画出叠加后的对数相频图(3分)。(若叠加图不对,但是画出了比例环节、积分环节、惯性环节的对数幅频图各给1分,画出积分环节、惯性环节的对数相频图各给1.5分) 44.解:
1)系统的特征方程为:
D(s)?2s3?3s2?s?k?0 (2分)
由劳斯阵列得:0< k<1.5 (2分) 2)由?(??)??90??arctan???arctan2????180?
得:???0.5 (2分)
1?10.5?1.5?3?0.67 (2分)
Kg??????14???1223)ess?limsE(s)?limss?0s?0s(s?1)(2s?1)?10.06?0.06?0.05 (2分) ??2??s(s?1)(2s?1)?1.2?ss?1.2286134801控制工程基础5试题答案及评分参考
一、单项选择题(每小题 1 分,共 20 分)
1 .A 2 .B 3 .D 4 .B 5 .C 6 .B 7.D 8 .A 9 .B 10.A 11.A 12.B 13.C 14.B 15.C 16.C 17.D 18.A 19.C 20.B 二、填空题(每空 1 分, 共 10 分)
21.偏差信号 22.零极点 23.2 24.对数坐标 25.
1
2??2?3j?26.相位裕量 27.单位反馈 28.幅值衰减 29.0.707 30.瞬态响应
五、计算题(第41、42题每小题5分,第43、44题每小题10分,共 30 分) 41.解:
G(s)?9 ?n?3 (2分)
s2?(2?9a)s?9当??0.7时42.解:
a?0.24 (3分)
??(t)?Dy0?(t)?ky0(t)?Fi(t)my0(ms2?Ds?k)Y0(s)?Fi(s)G(s)? (2.5分)
Y0(s)1? (2.5分) Fi(s)ms2?Ds?k43.解:
1)系统开环幅频Bode图为: (5分)
L(?) -20
34 28 -40
? 20
10 1 2
-60
2)相位裕量: (5分)
?c?10s?144.解:
??180??(?90??arctan0.5?10?arctan0.05?10)??15.26?
essrs(v?1)s10?limR(s)?lim(?)?0.5 (5分) s?0?Ks?020sessds(v1?1)s4?limD(s)?lim(?)?0.4 (5分) s?0?Ks?010s1自动控制原理6试题答案及评分参考
一、单项选择题(每小题 1 分,共 20 分)
1 .D 2 .C 3 .B 4 .C 5 .A 6 .B 7 .C 8 .A 9 .C 10.B 11.B 12.B 13.C 14.D 15.B 16.A 17.D 18.A 19.B 20.D 二、填空(每空 1 分, 共 10 分)
21.反馈控制22.越高23.输入量(或驱动函数) 24.低通滤波25.
1
2??2?3j?26.小27.常数28.闭环特征方程的阶数29.谐振频率 30.零点和极点
五、计算题(第41、42题每小题5分,第43、44题每小题10分,共 30 分) 41.解:
G(s)?42.解:
G1G4?1?G2H1??G1G2G3 (5分)
1?G2H1?G3H2?G1G4?G1G2G3?ui(t)?u0(t)?i1(t)R1?1?i2(t)dt?i1(t)R1??C1 ??i(t)?i1(t)?i2(t)?1i(t)dt?u0(t)?i(t)R2??C2??Ui(s)?U0(s)?I1(s)R1?1?I2(s)?I1(s)R1?C1s (2.5分) ??I(s)?I1(s)?I2(s)?1I(s)?U0(s)?I(s)R2?C2s?R1R2C1C2s2??R1C1?R2C2?s?1 (2.5分) G(s)?2R1R2C1C2s??R1C2?R2C2?R1C1?s?143.解:
1?a?j(1)G(jω)=该系统为Ⅱ型系统
(j?)2 ω=0+时,∠G(jω)=-180? (1分) 当a?0,????时,∠G(jω)=-90? (1分) 当a?0,????时,∠G(jω)=-270? (1分) 两种情况下的奈奎斯特曲线如下图所示;
(3分)
由奈氏图判定:a>0时系统稳定;a<0时系统不稳定 (2分)
2)系统的闭环特征多项式为D(s)=s2+as+1,D(s)为二阶,a>0为D(s)稳定的充要条件,与奈氏判据结论一致 (2分) 44.解:
(1)三条根轨迹分支的起点分别为s1=0,s2=-2,s3=-4;终点为无穷远处。 (1分) (2)实轴上的0至-2和-4至-∞间的线段是根轨迹。 (1分) (3)渐近线的倾角分别为±60°,180°。 (1分) 渐近线与实轴的交点为σa= (4)分离点:根据公式
?2?4 =-2 (1分) 3dK=0, 得:s1=-0.85,s2=-3.15因为分离点必须位于0和-2之间可见s2不是实际的ds分离点,s1=-0.85才是实际分离点。 (1分)