湖南省衡阳市2019-2020学年中考数学二模考试卷
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.∠A=120°∠C=80°如图,在四边形ABCD中,,.将△BMN沿着MN翻折,得到△FMN.若MF∥AD,FN∥DC,则∠F的度数为( )
A.70° B.80° C.90° D.100°
2.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( )
A.13 B.14 C.15 D.16
3.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是( )
A.a+b
B.﹣a﹣c
C.a+c
D.a+2b﹣c
4.已知一个多边形的内角和是外角和的2倍,则此多边形的边数为 ( ) A.6
B.7
C.8
D.9
5.计算-3-1的结果是( ) A.2 B.-2 C.4 D.-4
6.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线; Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线. 如图是按上述要求排乱顺序的尺规作图:
则正确的配对是( )
A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ C.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ 7.下列各数中是无理数的是( ) A.cos60°
B.1.3
·B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
C.半径为1cm的圆周长 D.38
8.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,其顶点坐标为A(﹣1,﹣3),与x轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集为﹣3<x<﹣1;③抛物线与x轴的另一个交点是(3,0);④方程ax2+bx+c+3=0有两个相等的实数根;其中正确的是( )
A.①③ B.②③ C.③④ D.②④
9.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是( )
A.角的内部到角的两边的距离相等的点在角的平分线上 B.角平分线上的点到这个角两边的距离相等 C.三角形三条角平分线的交点到三条边的距离相等 D.以上均不正确
10.人的大脑每天能记录大约8 600万条信息,数据8 600用科学记数法表示为( ) A.0.86×104
B.8.6×102
C.8.6×103
D.86×102
11.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是( ) A.55×106
B.0.55×108
C.5.5×106
D.5.5×107
12.函数y=A.x≠2
1x?2的自变量x的取值范围是( ) B.x<2
C.x≥2
D.x>2
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动, 把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为_____厘米.
14.不等式组??x?5?1?2x的解集是__.
?3x?2?4x15.若x?1+(y﹣2018)2=0,则x﹣2+y0=_____. 16.分解因式a3﹣6a2+9a=_________________.
17.鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示.根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是______.
18.分解因式:2x2﹣8=_____________
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.
(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;
(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?
20.(6分)如图,直线y=x与双曲线y=(k>0,x>0)交于点A,将直线y=x向上平移4个单位长度
后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B.
(1)设点B的横坐标分别为b,试用只含有字母b的代数式表示k; (2)若OA=3BC,求k的值.
21.(6分)如图1在正方形ABCD的外侧作两个等边三角形ADE和DCF,连接AF,BE.
请判断:AF与BE的数量关系
是 ,位置关系 ;如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断. 22.(8分)如图,在Rt
中,
,分别以点A、C为圆心,大于
长为半径画弧,两弧
相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE. (1)求
;(直接写出结果)
的周长.
(2)当AB=3,AC=5时,求