2019年河北省中考数学试题(Word版,含答案) 下载本文

.

三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)

20.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果. (1)计算:1+2﹣6﹣9;

(2)若1÷2×6□9=﹣6,请推算□的符号;

(3)在“1□2□6﹣9”的□填入符号后,使计算所得数最小,直接写出这个最小数. 21.(9分)已知:整式A=(n﹣1)+(2n),整式B>0. 尝试 化简整式A. 发现 A=B,求整式B.

联想 由上可知,B=(n﹣1)+(2n),当n>1时,n﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值: 直角三角形三边 勾股数组Ⅰ 勾股数组Ⅱ

2

2

2

2

2

2

2

2

2

n﹣1

/ 35

2

2n 8 /

B

22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=. (1)求这4个球价格的众数;

(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练. ①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;

②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.

Word资料

.

又拿 先拿

23.(9分)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的心. (1)求证:∠BAD=∠CAE;

(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;

(3)当AB⊥AC时,∠AIC的取值围为m°<∠AIC<n°,分别直接写出m,n的

值.

24.(10分)长为300m的春游队伍,以v(m/s)的速度向东行进,如图1和图2,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O开始行进的时间为t(s),排头与O的距离为S头

(m).

(1)当v=2时,解答:

①求S头与t的函数关系式(不写t的取值围);

②当甲赶到排头位置时,求S的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求S甲与t的函数关系式(不写t的取值围)

Word资料

.

(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值围),并写出队伍在此过程中行进的路程.

25.(10分)如图1和2,?ABCD中,AB=3,BC=15,tan∠DAB=.点P为AB延长线上一点,过点

A作⊙O切CP于点P,设BP=x.

(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE与BC的位置关系;

(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP与劣弧度的大小;

(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值围.

26.(12分)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x+bx的顶点为C,且L与x轴右交点为D.

(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标; (2)当点C在l下方时,求点C与l距离的最大值;

(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;

(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.

2

Word资料

.

2019年省中考数学试卷

参考答案与试题解析

一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)

1.【解答】解:正五边形五个角相等,五条边都相等, 故选:D.

2.【解答】解:“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3. 故选:B.

3.【解答】解:∵从点C观测点D的视线是CD,水平线是CE, ∴从点C观测点D的仰角是∠DCE, 故选:B.

4.【解答】解:“x的与x的和不超过5”用不等式表示为x+x≤5. 故选:A.

5.【解答】解:∵四边形ABCD是菱形,∠D=150°, ∴AB∥CD,∠BAD=2∠1, ∴∠BAD+∠D=°, ∴∠BAD=°﹣150°=30°, ∴∠1=15°; 故选:D.

6.【解答】解:①a(b+c)=ab+ac,正确; ②a(b﹣c)=ab﹣ac,正确;

③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;

④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算. 故选:C.

7.【解答】证明:延长BE交CD于点F,

则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个角之和). 又∠BEC=∠B+∠C,得∠B=∠EFC. 故AB∥CD(错角相等,两直线平行).

Word资料