(完整word版)苏教版六年级数学下册知识点,推荐文档 下载本文

8x=5×16 4:9 =x:18

x=10 9x =4×18

x =8

知识点六:用比例解应用题

解题方法:审题列出比例等量关系式------设未知数列出比例方程------解比例并检验写答

例1:A、B两种商品的价格比是5:3,如果它们的价格分别上涨了420元后,价格比是6:5。那么A商品原来多少元?

解析:本题中告诉我们A、B两种商品涨价前后的价格比,利用比例的基本性质可以得到等量关系是:

(A商品原来的价格+420元):(B商品原来的价格+420元)=6:5 利用比例基本性质,设A商品原来的价格是5x元,B商品原来的价格是3x元 列出比例方程

(5x+420):(3x+420)=6:5

(5x+420)×5 =(3x+420)×6------比例基本性质

25x+2100 =18x+2520------乘法分配率 25x-18x=2520-2100------等式基本性质

x =60

5×60=300元

答:A商品原来300元。

知识点七:比例尺的意义 理解掌握:

比例尺就是图上距离与实际距离的比。 图上距离是比的前项,实际距离是比的后项,比例尺是一个最简单的整数比。

相关公式:(1)比例尺=图上距离÷实际距离

(2)图上距离=比例尺×实际距离 (3)实际距离=图上距离÷比例尺

知识点八:比例尺的应用 理解掌握:

(1)注意比例尺的前后单位是否统一。一般比例尺的单位是厘米,而题目往往会给出以千米做单位的比例 尺。如1:40千米=1:4000000厘米

(2)因为图上距离是比例的前项,实际距离是比例的后项,所以当比例尺的图上距离大于实际距离时,表示设计图纸大于实际物体,如比例尺是10:1(经常在精密仪器、化学领域中出现);当比例尺的图上距离小于实际距离时,表示设计图纸小于实际物体,如比例尺1:100(比如设计一栋教学楼)。

第五单元 确定位置

知识点一、根据方向和距离确定物体的位置 理解掌握:

(1)用字母表示方向。S表示“南”,W表示“西”,E表示“东”,N表示“北”。

(2)理解“X偏X若干度”,如南偏西15°,表示由南面向西面旋转15°

的方向;西偏南15°,表示有西面向南面旋转15°的方向。这两个方向一样吗?请同学们仔细考虑一下?如果不一样,那么应该这么说呢?南偏西15°= 偏 ° ;西偏南15°= 偏 °。

(3)如何来用方向和距离确定位置呢?

答:一找观察地点和实际地点,二看实际地点在观察地点的什么方向上,

三量出观察地点和实际地点的距离,四标注要清楚。 知识点二、根据平面图用方向和距离描述简单的行走路线

解题方法:描述行走路线的方法:

按行走路线,确定观测点及行走方向和路程,用“先??然后??再”等词语,按顺序叙述。

第六单元 正比例和反比例 知识点一、正比例的意义及应用 理解掌握:

(1)正比例的定义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数 的比值(在除法中是叫做商)一定,那么这两个量叫做成正比例的量,它们的关系叫做成正比例关系。

(2)如果用字母x和y分别表示两种相关的量,用k表示它们的比值(一定),正比例关系式可用x/y=k。

(3)判断两种量是否成正比例的应用方法:

1、判断两个是否相关联;2、判断这两个量的比值是否一定,比值一定就

成正比例关系; 反之不成正比例关系。(简说:用除法,商一定,成正比) 知识点二、正比例的图像

理解掌握:

正比例图像是一条直线。从图像中,可以直观看到两种量的变化情况,由一个量的值可以直接找到对应的另一个量的值。 知识点三:反比例的意义及应用

理解掌握:

(1)反比例的定义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,那么这两个量叫做成反比例的量,它们的关系叫做成反比例关系。

(2)如果用字母x和y分别表示两种相关的量,用k表示它们的比值(一定),反比例关系式可用x×y=k。

(3)判断两种量是否成反比例的应用方法: 1、判断两个是否相关联;

2、判断这两个量的积是否一定,积一定就成反比例关系;反之 不成反比例关系。(简说:用乘法,积一定,成反比) 知识点四:用正反比例解应用题

解题方法:

(1)判断题目中相关联的量成什么关系,列出等量关系式; (2)设未知数,列方程; (3)解方程并检验写答。

例1:一部机器上有两个互相咬合的齿轮,主动轮有80个齿,每分钟转90转。从动轮有48个齿,每分钟转多少转?

解析:先判断齿数和转数成反比例关系,理由是齿数×转数=总齿数(一定)。

等量关系是:主动轮齿数×主动轮转数=从动轮齿数×从动轮转数 再设从动轮每分钟转x转。 48×x=80×90

x=150 答:从动轮每分钟转150转。