物理化学核心教程(第二版)思考题习题答案—第6章 相平衡 下载本文

第六章 相平衡

一.基本要求

1.掌握相平衡的一些基本概念,会熟练运用相律来判断系统的组分数、相数和自由度数。

2.能看懂单组分系统的相图,理解相图中的点、线和面的含义及自由度,知道相图中两相平衡线的斜率是如何用Clapeyron方程和Clausius-Clapeyron方程确定的,了解三相点与凝固点的区别。

3.能看懂二组分液态混合物的相图,会在两相区使用杠杆规则,了解蒸馏与精馏的原理,知道最低和最高恒沸混合物产生的原因。

4.了解部分互溶双液系和完全不互溶双液系相图的特点,掌握水蒸汽蒸馏的原理。

5.掌握如何用热分析法绘制相图,会分析低共熔相图上的相区、平衡线和特殊点所包含的相数、相的状态和自由度,会从相图上的任意点绘制冷却时的步冷曲线。了解二组分低共熔相图和水盐相图在湿法冶金、分离和提纯等方面的应用。

6.了解生成稳定化合物、不稳定化合物和形成固溶体相图的特点,知道如何利用相图来提纯物质。

二.把握学习要点的建议

相律是本章的重要内容之一,不一定要详细了解相律的推导,而必须理解相律中各个物理量的意义以及如何求算组分数,并能熟练地运用相律。

水的相图是最简单也是最基本的相图,要把图中的点、线、面的含义搞清楚,知道确定两相平衡线的斜率,学会进行自由度的分析,了解三相点与凝固点的区别,为以后看懂相图和分析相图打好基础。

超临界流体目前是分离和反应领域中的一个研究热点,了解一些二氧化碳超临界流体在萃取方面的应用例子,可以扩展自己的知识面,提高学习兴趣。

二组分理想液态混合物的相图是二组分系统中最基本的相图,要根据纵坐标是压力还是温度来确定气相区和液相区的位置,理解气相和液相组成为什么会随着压力或温度的改变而改变,了解各区的条件自由度(在二组分相图上都是条件自由度),为以后看懂复杂的二组分相图打下基础。

最高(或最低)恒沸混合物不是化合物,是混合物,这混合物与化合物的最根本

的区别在于,恒沸混合物含有两种化合物的分子,恒沸点的温度会随着外压的改变而改变,而且两种分子在气相和液相中的比例也会随之而改变,即恒沸混合物的组成也会随着外压的改变而改变,这与化合物有本质的区别。

杠杆规则可以在任何两相区使用,但也只能在两相区使用,在三相区和在三相平衡线上是不能使用杠杆规则的。

从具有最高会溶温度的相图,要认清帽形区的特点,是两液相的平衡共存区,这对今后理解两个固溶体也会形成帽形区很有帮助。

在学习用热分析法绘制二组分低共熔相图时,首先要理解在步冷曲线上为什么会出现转折点和水平线段,这一方面要从散热与释放出的凝固热进行补偿的角度理解,另一方面要从自由度的变化来理解。理解了步冷曲线上自由度的变化情况,对相图中的自由度就容易理解。

要花较多的精力掌握简单的二组分低共熔相图,要进行相区、两相平衡线、三相平衡线和特殊点的自由度分析,这样今后就容易看懂和理解复杂相图,因为复杂相图一般是简单相图的组合。

低共熔混合物到底有几个相?这个问题初学时容易混淆,答案当然是两相,不过这是两种固体以微小的结晶均匀混合的物系,纵然在金相显微镜中看起来也很均匀,但小晶体都保留着原有固体的物理和化学性质,所以仍是两相。低共熔点的温度和组成都会随着外压的改变而改变,所以低共熔混合物也不是化合物。

对于形成稳定化合物和不稳定化合物的相图,要抓住相图的特点,了解稳定化合物的熔点与不稳定化合物的转熔温度之间的差别,比较一般的三相线与不稳定化合物转熔时的三相线有何不同?要注意表示液相组成点的位置有什么不同,这样在分析复杂相图时,很容易将稳定化合物和不稳定化合物区别开来。

固溶体是固体溶液的简称,固溶体中的“溶”是溶液的“溶”,所以不要把“溶”字误写为“熔”字。既然固溶体是溶液的一种,实际是混合物的一种(即固体混合物),所以固溶体是单相,它的组成线与液态溶液的组成线一样,组成会随着温度的改变而改变。在相图上,固溶体总是处在由两根曲线封闭的两相区的下面。在分析复杂相图,首先要能正确认出固溶体或帽形区的位置,则其他相区的分析就变得简单了。

三.思考题参考答案

1.硫氢化铵NH4HS(s)的分解反应:① 在真空容器中分解;② 在充有一定NH3(g)的容器中分解,两种情况的独立组分数是否一样?

答: 两种独立组分数不一样。在①中,C =1。因为物种数S 为3,但有一个独立的化学平衡和一个浓度限制条件,所以组分数等于1。

在②中,物种数S仍为3,有一个独立的化学平衡,但是浓度限制条件被破坏了,两个生成物之间没有量的限制条件,所以独立组分数C =2。

2.纯的碳酸钙固体在真空容器中分解,这时独立组分数为多少? ??答: 碳酸钙固体的分解反应为 CaCO3(s)????CaO(s)?CO2(g)

物种数为3,有一个平衡限制条件,但没有浓度限制条件。因为氧化钙与二氧化碳不处在同一个相,没有摩尔分数的加和等于1的限制条件,所以独立组分数为2。

3.制水煤气时有三个平衡反应,求独立组分数C ? (1) H2O(g)+ C(s)= H2(g)+ CO(g) (2) CO2(g)+ H2(g)= H2O(g)+ CO(g) (3) CO2(g)+ C(s)= 2CO(g)

答: 三个反应中共有5个物种,S?5。方程(1)可以用方程(3)减去(2)得到,因而只有2个独立的化学平衡,R?2。没有明确的浓度限制条件,所以独立组分数C?3。

??4.在抽空容器中,氯化铵的分解平衡,NH4Cl(s)????NH3(g)?HCl(g)。指出该系

统的独立组分数、相数和自由度数?

答:反应中有三个物种,一个平衡限制条件,一个浓度限制条件,所以独立组分数为1,相数为2。根据相律,自由度为1。即分解温度和分解压力两者之中只有一个可以发生变化。

??5.在含有氨的容器中氯化铵固体分解达平衡,NH4Cl(s)????NH3(g)?HCl(g)。指

出该系统的独立组分数、相数和自由度?

答: 反应中有三个物种,一个平衡限制条件,没有浓度限制条件。所以独立组分数为2,相数为2,自由度为2。

6.碳和氧在一定条件下达成两种平衡,指出该系统的独立组分数、相数和自由度数。 C(s)+12O2(g)=CO(g) CO(g)+12O2(g)=CO(g) 2答: 物种数为4,碳,氧,一氧化碳和二氧化碳,有两个化学平衡,无浓度限制条件,所以独立组分数为2,相数为2,自由度为2。

7.水的三相点与冰点是否相同?

答: 不相同。纯水的三相点是气-液-固三相共存,其温度和压力由水本身性质决定,这时的压力为610.62 Pa,温度为273.16 K 。热力学温标1 K就是取水的三相点温度的1/273.16 K 。

水的冰点是指在大气压力下,冰与水共存时的温度。由于冰点受外界压力影响,在101.3 kPa压力下,冰点下降0.00747 K,由于水中溶解了空气,冰点又下降0.0024 K,所以在大气压力为101.3 kPa 时,水的冰点为273.15 K 。虽然两者之间只相差0.01 K,但三相点与冰点的物理意义完全不同。

8.沸点和恒沸点有何不同?

答: 沸点是对纯液体而言的。在大气压力下,纯物质的液-气两相达到平衡,当液体的饱和蒸气压等于大气压力时,液体沸腾,这时的温度称为沸点。

恒沸点是对二组分液相混合系统而言的,是指两个液相能完全互溶,但对Raoult定律发生偏差,当偏差很大,在p?x图上出现极大值(或极小值)时,则在T?x图上出现极小值(或极大值),这时气相的组成与液相组成相同,这个温度称为最低(或最高)恒沸点,用简单蒸馏的方法不可能把二组分完全分开。这时,所对应的双液系统称为最低(或最高)恒沸混合物。在恒沸点时自由度为1,改变外压,恒沸点的数值也改变,恒沸混合物的组成也随之改变。当压力固定时,条件自由度为零,恒沸点的温度有定值。

9.恒沸混合物是不是化合物?

答:不是。它是完全互溶的两个组分的混合物,是由两种不同的分子组成。在外压固定时,它有一定的沸点,这时气相的组成和液相组成完全相同。但是,当外部压力改变时,恒沸混合物的沸点和组成都会随之而改变。化合物的沸点虽然也会随着外压的改变而改变,但它的组成是不会改变的。

10.在汞面上加了一层水能减少汞的蒸气压吗?

答:不能。因为水和汞是完全不互溶的两种液体,两者共存时,各组分的蒸气压与单独存在时的蒸气压一样,液面上的总压力等于纯水和纯汞的饱和蒸气压之和。如果要蒸馏汞的话,加了水可以使混合系统的沸点降低,这就是蒸气蒸馏的原理。所以,仅仅在汞面上加一层水,是不可能减少汞的蒸气压的,但是可以降低汞的蒸发速度。

11.单组分系统的三相点与低共熔点有何异同点? 答: 共同点:两者都是气-液-固三相共存。

不同点:单组分系统的三相点是该组分纯的气、液、固三种相态平衡共存,这时的自由度等于零,它的压力、温度由系统自身的性质决定,不受外界因素的影响。而二组分系统在低共熔点(如T-x图上的E点)温度时,是纯的A固体、B固体和组成为E的熔液三相平衡共存,这时的自由度为1,在等压下的条件自由度等于零。E点的组成由A和B的性质决定,但E点的温度受压力影响,当外压改变时,E点的温度和组成也会随之而改变。

12.低共熔混合物能不能看作是化合物?

答:不能。低共熔混合物不是化合物,它没有确定的熔点,当压力改变时,低共熔物的熔化温度和组成都会改变。虽然低共熔混合物在金相显微镜下看起来非常均匀,但它仍是两个固相微晶的混合物,由两个相组成。

13.在实验中,常用冰与盐的混合物作为致冷剂。试解释,当把食盐放入0℃的冰-水平衡系统中时,为什么会自动降温?降温的程度有否限制,为什么?这种致冷系统最多有几相?

解: 当把食盐放入0℃的冰-水平衡系统中时,由于食盐与冰有一个低共熔点,使水的冰点降低,因此破坏了冰-水平衡,冰就要融化。融化过程中要吸热,系统的温度下降。 降温有一定的限度,因为它是属于二组分系统的低共熔混合物,当温度降到低共熔点时,冰、食盐与溶液达到了平衡,系统的温度就不再下降。

根据相律:f?C?2?P,组分数为H2O(l)和NaCl(s),C?2。当f?0时,最多相数P?4,即气相,溶液,冰和NaCl(s)四相共存。如果指定压力,则条件自由度等于零时,最多相数P?3,溶液,冰和NaCl(s)三相平衡共存。

四.概念题参考答案

1.NH4HS(s)与任意量的NH3(g)及H2S(g))达平衡时,有 ( ) (A) C= 2,P = 2,f= 2 (B) C= 1,P = 2,f= 1

(C) C= 2,P = 3,f= 2 (D) C= 3,P = 2,f= 3

答:(A)。系统中有三个物种,一个平衡条件,由于已存在NH3(g)及H2S(g),就不存在浓度限制条件,所以组分数C?2。平衡共存时有固相和气相两个相,根据相律,自由度

f?2。

2.在大气压力下,FeCl3(s)与H2O(l)可以生成FeCl3?2H2O(s),FeCl3?5H2O(s),

FeCl3?6H2O(s)和FeCl3?7H2O(s)四种固体水合物,则该平衡系统的组分数C和能够平衡

共存的最大相数P为

( )

(B)C?3, P?4 (D)C?3, P?5

(A) C?3, P?3 (C) C?2, P?3

答:(C)。这是二组分系统生成稳定化合物(或稳定水合物)的一个例子,FeCl3(s)与H2O(l)可以生成多种水合物,但它还是二组分系统,所以组分数必定等于2。不能把生成

的稳定水合物也看作是组分。如果要写出生成水合物的多个平衡方程式,则多一个水合物物种,也多一个化学平衡方程,所以组分数是不会改变的。根据组分数等于2这一点,就可以决定选(C)。

根据相律,当自由度等于零时,能得到平衡共存的最大相数。则f?C?2?P?0,理论上最大相数似乎应等于4,但是题目已标明是在大气压力下,用f*?C?1?P?3?P,所以能见到的平衡共存的最大相数只有3个。如果题目不标明是在大气压力下,由于凝聚相系统受压力影响极小,也应该看作是在等压条件下进行的,能见到的平衡共存的最大相数只能是3个。

3.在 100 kPa 的压力下,I2(s)在H2O(l)和CCl4(l)两个完全不互溶的液相系统中达分配平衡。设平衡时I2(s)已不存在,则该系统的组分数和自由度数分别为 ( )

(A) C?2, f?1 (C) C?3, f?2

**

(B)C?2, f?2 (D)C?3, f?3

**答:(C)。该系统中显然有I2(s),H2O(l)和CCl4(l)三个物种,S?3,但无化学平衡,

R?0,也无浓度限制条件,R'?0(不要把I2在两相中的分配平衡看作是浓度关系式,

因为在推导分配常数时已用到了I2在两相中化学势相等的条件),所以组分数C?3。由于是两相平衡,又指定了压力,所以条件自由度f?C?1?P?3?1?2?2。

4.CuSO4与水可生成CuSO4?H2O,CuSO4?3H2O和CuSO4?5H2O三种水合物,则在一定温度下与水蒸气达平衡的含水盐最多为 ( )

*(A) 3种 (B) 2种

(C) 1种 (D) 不可能有共存的含水盐

答:(B)。系统的组分数为2,已指定温度,根据相律,条件自由度等于零时,可得最多可以共存的相数,f*?C?1?P?2?1?P?0,最多可以三相共存。现在已指定有水蒸气存在,所以,可以共存的含水盐只可能有2种。

5.某一物质X,在三相点时的温度是20℃,压力是200 kPa。下列哪一种说法是不正确的 ( ) (A) 在20℃以上,X能以液体存在

(B) 在20℃以下,X 能以固体存在

(C) 在25℃和100 kPa下,液体X 是稳定的 (D) 在20℃时,液体X 和固体X 具有相同的蒸气压

答:(C)。可以画一张单组分系统相图的草图,(C)所描述的条件只能落在气相区,所以这种说法是不正确的。

6.N2的临界温度是124 K,如果想要液化N2(g),就必须 ( ) (A) 在恒温下增加压力 (B) 在恒温下降低压力

(C) 在恒压下升高温度 (D) 在恒压下降低温度

答:(D)。临界温度是指在这个温度之上,不能用加压的方法使气体液化,所以只有在恒压下用降低温度的方法使之液化。

7.当Clausius-Clapeyron方程应用于凝聚相转变为蒸气时,则 ( ) (A) p必随T之升高而降低 (B) p必不随T而变

(C) p必随T之升高而变大 (D) p随T之升高可变大也可减少

答:(C)。 因为凝聚相转变为蒸气时总是吸热的,根据Clausius-Clapeyron方程,等式右方为正值,等式左方也必定为正值,所以 p随T之升高而变大。

8.对于恒沸混合物的描述,下列各种叙述中不正确的是 ( ) (A) 与化合物一样,具有确定的组成 (B) 不具有确定的组成 (C) 平衡时,气相和液相的组成相同 (D) 恒沸点随外压的改变而改变

答:(A)。恒沸混合物不是化合物,不具有确定的组成,其恒沸点和组成都会随着外压的改变而改变。

9.对于二组分气—液平衡系统,哪一个可以用蒸馏或精馏的方法将两个组分分离成纯组分?

( )

(A)接近于理想的液体混合物 (B)对Raoult定律产生最大正偏差的双液系

(C)对Raoult定律产生最大负偏差的双液系 (D)部分互溶的双液系

答:(A)。完全互溶的理想双液系,或对Raoult定律发生较小正(负)偏差的都可以用蒸馏或精馏的方法将其分开,两者的沸点差别越大,分离越容易。而对Raoult定律产生最大正(负)偏差的双液系,气-液两相区分成两个分支,形成了最低(或最高)恒沸混合物,用蒸馏方法只能得到一个纯组分和一个恒沸混合物。部分互溶的双液系首先要将两个液层分离,然后视具体情况而决定分离两个互溶部分的液相,或采用萃取的方法,单用蒸馏方法是不行的。

10.某一固体,在25℃和大气压力下升华,这意味着 ( ) (A) 固体比液体密度大些 (B) 三相点的压力大于大气压力 (C) 固体比液体密度小些 (D) 三相点的压力小于大气压力

答:(B)。画一单组分系统相图的草图,当三相点的压力大于大气压力时,在25℃和大气压力下处于气相区,所以固体会升华。CO2的相图就属于这一类型。

11.在相图上,当系统处于下列哪一点时,只存在一个相? ( ) (A) 恒沸点 (B) 熔点 (C) 临界点 (D) 低共熔点

答:(C)。在临界点时,气-液界面消失,只有一个相。其余三个点是两相或三相共存。 12.在水的三相点附近,其摩尔气化焓和摩尔熔化焓分别为44.82 kJ?mol和

5.99 kJ?mol。则在三相点附近,冰的摩尔升华焓为 ( )

?1?1 (A) 38.83 kJ?mol (B) 50.81 kJ?mol

?1?1 (C) ?38.83 kJ?mol (D) ?50.81 kJ?mol

?1?1答:(B)。摩尔升华焓等于摩尔气化焓与摩尔熔化焓之和。

13.某反应系统中共有的物种为Ni(s),NiO(s),H2O(l),H2(g),CO(g)和CO2(g),它们之间可以达成如下三个化学平衡

?? (1) NiO(s)?CO(g)??????Ni(s)?CO2(g) ?? (2) H2O(l)?CO(g)???????H2(g)?CO2(g)

p,3?? (3) NiO(s)?H2(g)???????Ni(s)?H2O(l)

Kp,1?Kp,2?K?该反应的组分数C和平衡常数之间的关系为

(A) C?3, Kp,1?Kp,2?Kp,3 (C) C?3, Kp,3?Kp,1/Kp,2

??????

? ( )

??

(B)C?4, Kp,3?Kp,1/Kp,2 (D)C?4, Kp,3?Kp,2/Kp,1

???答:(B)。这个系统有6个物种,在三个化学平衡中只有2个是独立的,没有其他限制条件,所以组分数C?4。因为(1)?(2)?(3),方程式的加减关系,反应的Gibbs自由能也是加减关系,而平衡常数之间则是乘除关系,所以Kp,3?Kp,1/Kp,2。

14.将纯的H2O(l)放入抽空、密闭的石英容器中,不断加热容器,可以观察到哪种现象

( )

???(A) 沸腾现象 (C) 升华现象

(B)三相共存现象 (D)临界现象

答:(D)。在单组分系统的相图上,是该系统自身的压力和温度,就象该实验所示。实验不是在外压下进行的,系统中也没有空气,所以不可能有沸腾现象出现。在加热过程中,

??水的气、液两种相态一直处于平衡状态,即H2O(l)?随着温度的升高,H2O(l)???H2O(g)。

的密度不断降低,而水的蒸气压不断升高,致使H2O(g)的密度变大,当H2O(l)和H2O(g)的两种相态的密度相等时,气-液界面消失,这就是临界状态。

15.Na 2CO3和水可形成三种水合盐:Na2CO3·H2O、Na2CO3·7H2O和NaCO3·10H2O。在

常压下,将Na2CO3投入冰-水混合物中达三相平衡时,若一相是冰,一相是Na2CO3水溶液,则另一相是 ( )

(A) Na2CO3

(B) (D)

Na2CO3·H2O Na2CO3·10H2O

(C) Na2CO3·7H2O

答:(D)。画一张草图,NaCO3·10H2O的含水量最多,一定最靠近表示纯水的坐标一边。

五.习题解析

1.将N2(g),H2(g)和NH3(g)三种气体,输入773 K,3.2?10 kPa的放有催化剂的合成塔中。指出下列三种情况系统的独立组分数(设催化剂不属于组分数)

7(1) N2(g),H2(g)和NH3(g)三种气体在输入合成塔之前。 (2) 三种气体在塔内反应达平衡时。

(3) 开始只输入NH3(g),合成塔中无其它气体,待其反应达平衡后。 解: (1) 进入合成塔之前,三种气体没有发生反应,故组分数C?3。

(2)在塔内反应达平衡时,系统的物种数S?3,但有一个化学平衡条件,故C?2。 (3)开始只输入NH3(g),NH3(g)分解达平衡,系统的物种数S?3,但有一个化学平衡条件和一个浓度限制条件,故C?1。

2.指出下列平衡系统中的物种数,组分数,相数和自由度数。 (1) CaSO4的饱和水溶液。

(2) 将5gNH3(g)通入1 dm水中,在常温下与蒸气平衡共存。

解:(1)物种数S?2,CaSO4(s)和H2O(l)。组分数C?2,相数P?2。根据相律,

f?C?2?P?2。这两个自由度是指温度和压力,即在一定的温度和压力的范围内,能

3

保持固、液两相平衡不发生变化。

(2) 因为NH3(g)与水会发生相互作用,生成NH3?H2O,所以物种数S?3,

NH3(g),H2O(l)和NH3?H2O。有一个形成一水合氨的平衡,故R?1,所以C?2。有

气、液两相,P?2。根据相律,f?C?2?P?2。这两个自由度是指温度和压力,即在一定的温度和压力的范围内,能维持固、气两相平衡的状态不发生变化。

3.CaCO3(s)在高温下分解为CaO(s)和CO2(g),根据相律解释下述实验事实。 (1) 在一定压力的CO2(g)中,将CaCO3(s)加热,实验证明在加热过程中,在一定的温度范围内CaCO3(s)不会分解。

(2) 在CaCO3(s)的分解过程中,若保持CO2(g)的压力恒定,实验证明达分解平衡时,温度有定值。

解:(1) 该系统中有两个物种,CO2(g)和CaCO3(s),所以物种数S?2。在没有发生反应时,组分数C?2。现在是一个固相和一个气相两相共存,P?2。当CO2(g)的压

力有定值时,根据相律,条件自由度f*?C?1?P?2?1?2?1。这个自由度就是温度,即在一定的温度范围内,可维持两相平衡共存不变,所以CaCO3(s)不会分解。

(2)该系统有三个物种,CO2(g),CaCO3(s)和CaO(s),所以物种数S?3。有一个化学平衡,R?1。没有浓度限制条件,因为产物不在同一个相,故C?2。现在有三相共存(两个固相和一个气相),P?3。若保持CO2(g)的压力恒定,条件自由度

f*。也就是说,在保持CO2(g)的压力恒定时,温度不能发生变?C?1?P?2?1?3?0化,即CaCO3(s)的分解温度有定值。

4.已知固体苯的蒸气压在273 K时为3.27 kPa,293 K时为12.30 kPa;液体苯的蒸气压在293 K时为10.02 kPa,液体苯的摩尔气化焓为?vapHm?34.17 kJ?mol。试计算

(1) 在303 K 时液体苯的蒸气压,设摩尔气化焓在这个温度区间内是常数。

(2) 苯的摩尔升华焓。 (3) 苯的摩尔熔化焓。

解:(1) 用Clausius-Clapeyron 方程,求出液态苯在303 K时的蒸气压 lnp(T2)p(T1)??vaHpRm

?1?1?1??? ?T1T2??1?1lnp(303K)10.02 kPa?34 170 J?mol8.314 J?mol?1?K1??1??? 293K303K??解得液体苯在303 K时的蒸气压

p(303K)?15.91 kPa

(2)用Clausius-Clapeyron方程,求出固体苯的摩尔升华焓 ln12.303.27??suHb8.314J?mol?1m?K?11??1???

?273K293K?解得固体苯的摩尔升华焓

?subHm?44.05 kJ?mol

(3)苯的摩尔熔化焓等于摩尔升华焓减去摩尔气化焓 ?fuHsm?1??sHub??H mvap?(44.05?34.17) kJ?mol?1?9.88 kJ?mol

?15.结霜后的早晨冷而干燥,在-5℃,当大气中的水蒸气分压降至266.6 Pa 时,霜会升华变为水蒸气吗? 若要使霜不升华,空气中水蒸气的分压要有多大?已知水的三相点的温度和压力分别为273.16 K和611 Pa,水的摩尔气化焓?vapHm?45.05 kJ?mol,冰的摩尔融化焓?fusHm?6.01 kJ?mol?1。设相变时的摩尔焓变在这个温度区间内是常数。

解:冰的摩尔升华焓等于摩尔熔化焓与摩尔气化焓的加和,

?subHm??vapHm??fusHm

?1 ?(45.05?6.01) kJ?mol?1?51.06 kJ?mol?1

用Clausius-Clapeyron 方程,计算268.15 K(-5℃)时冰的饱和蒸气压 lnp(268.15K)5?611 Pa8.3141? 060???273.16??

268.15?11解得 p(268.15?K)401 .而268.15 K(-5℃)时,水蒸气的分压为266.6 Pa,低于霜的水蒸气分压,所以这时霜要升华。当水蒸气分压等于或大于401.4 Pa时,霜可以存在。

6.在平均海拔为4 500 m的高原上,大气压力只有57.3 kPa。已知压力与温度的关系式为 ln(p/Pa)?25.567?5 216 KT。试计算在这高原上水的沸点。

解:沸点是指水的蒸气压等于外界压力时的温度。现根据压力与温度的关系式,代入压力的数据,计算蒸气压等于57.3 kPa时的温度,

00 ln57 3?5216 K25?.567

T解得: T?357 K

即在海拔为4 500 m的高原上,水的沸点只有357 K,即84 ℃,这时煮水做饭都要用压力锅才行。

7.将NH3(g)加压,然后在冷凝器中用水冷却,即可得液氨,即NH3(l)。已知某地区一年中最低水温为2℃,最高水温为37℃,问若要保证该地区的氮肥厂终年都能生产液氨,则所选氨气压缩机的最低压力是多少?已知:氨的正常沸点为-33℃,蒸发焓为1 368 J?g设蒸发焓是与温度无关的常数。

?1,

解: 氨在正常沸点-33℃(240 K)时,它的蒸气压等于大气压力,为101.325 kPa。水温为2℃(275 K)时,氨的蒸气压较低,得到液氨没有问题。主要是计算在37℃(310K)时氨的蒸气压,这就是压缩机所需的最低压力。已知氨的摩尔蒸发焓为: ?vaHpm?1 368 ?Jg??117? gm?ol?1 kJmol23.2?56?1 根据Clausius-Clapeyron 方程,计算310 K时 氨的蒸气压,。 lnp(310K)23 ?2561?????

101.325kPa8.314?240310?1 408. 31解得: p(310K?)即在37℃时,压缩机的最低压力必须大于1 408.3 kPa,才能终年都能生产液氨。

8.CO2的固态和液态的蒸气压与温度的关系式,分别由以下两个方程给出:

ps lg(pl lg(/P?a)/P?a)1 360 K11?.986

T874 K9.?729

T试计算: (1) 二氧化碳三相点的温度和压力。

(2) 二氧化碳在三相点时的熔化焓和熔化熵。

解: (1) 在三相点时,固态和液态的蒸气压相等,ps?pl,即 11.98?61 360 K?T9.?729T874 K

解得三相点的温度 T?215.3 K

代入任意一个蒸气压与温度的方程式,计算三相点时的压力(两个结果稍有不同)

p三(相点 lg()/P?a)1 36011?.986?215.3 5.669解得 p(三相点)?466.7 kP(2) 根据Clausius-Clapeyron 方程的一般积分式 ln'pPa???vaHpRm?1T?C

'式中C是积分常数。对照题中所给的方程,从固体的蒸气压与温度的关系式,可计算得到二氧化碳的摩尔升华焓,从液体的蒸气压与温度的关系式,可计算得到二氧化碳的摩尔蒸发焓,

?subHm2.303R?1 360 K ?1

?subHm?(2.303?1360?8.314) J?mol?26.04 kJ?mol

?1?vapHm2.303R?874 K

?1?vapHm?(2.303?874?8.314) J?mol摩尔熔化焓等于摩尔升华焓减去摩尔蒸发焓,

?16.73 kJ?mol

?1?fusHm??subHm??vapHm

?(26.04?16.73) kJ?mol ?fusSm=?1?9.31 kJ?mol?1?1

?1?fusHmTf?9310 J?mol215.3 K?1?43.2 J?mol?K

9.根据CO2的相图,回答如下问题。

(1)说出OA,OB和OC三条曲线以及特殊点O点与A点的含义。

(2)在常温、常压下,将CO2高压钢瓶的阀门慢慢打开一点,喷出的CO2呈什么相态?为什么?

(3)在常温、常压下,将CO2高压钢瓶的阀门迅速开大,喷出的CO2呈什么相态?为什么?

(4)为什么将CO2(s)称为“干冰”?CO2(l)在怎样的温度和压力范围内能存在?

解:(1)OA线是CO2(l)的饱和蒸气压曲线。OB线是CO2(s)的饱和蒸气压曲线,也就是升华曲线。OC线是CO2(s)与CO2(l)的两相平衡曲线。O点是CO2的三相平衡共存的点,简称三相点,这时的自由度等于零,温度和压力由系统自定。A点是CO2的临界点,这时气-液界面消失,只有一个相。在A点温度以上,不能用加压的方法将CO2(g)液化。

(2)CO2喷出时有一个膨胀做功的过程,是一个吸热的过程,由于阀门是被缓慢打开的,所以在常温、常压下,喷出的还是呈CO2(g)的相态。

(3)高压钢瓶的阀门迅速被打开,是一个快速减压的过程,来不及从环境吸收热量,近似为绝热膨胀过程,系统温度迅速下降,少量CO2会转化成CO2(s),如雪花一样。实验室制备少量干冰就是利用这一原理。

(4)由于CO2三相点的温度很低,为216.6 K,而压力很高,为518 kPa。我们处在常温、常压下,只能见到CO2(g),在常压低温下,可以见到CO2(s),这时CO2(s)会直接升华,看不到由CO2(s)变成CO2(l)的过程,所以称CO2(s)为干冰。只有在温度为

216.6 K至304 K,压力为518 kPa至7400 kPa的范围内,CO2(l)才能存在。所以,生

活在常压下的人们是见不到CO2(l)的。

10.某有机物B与水(A)完全不互溶,在101.325 kPa的压力下用水蒸气蒸馏时,系统于90℃时沸腾,馏出物中水的质量分数wA?0.24。已知90 ℃时水的蒸气压

pA?70.13 kPa,请估算该有机物的摩尔质量。

*解:以m(A)代表水的质量,m(B)代表有机物的质量。已知90℃时,pA?70.13 kPa,则有机物在这个温度下的饱和蒸气压为:

?5 pB?(101.32**70.13?)kPa3 1.20 kPa取蒸气相的总质量为100 g ,则水气的质量m(A)?24 g,有机物的质量m(B)为: m(B)?(100?24) g?76 g 设水蒸气蒸馏时的总蒸气压为p,则

* pA?pyA?pnAnA?nB* pB?pyB?pnBnA?nB

将两式相比,消去相同项,得

pApBM**?nAnBpApB**?m(A)/MA

m(B)/MBMAB???m(B)m(A)

?170.13kPa? ?31.20kPa?1 ?128 ?gm lo1?8 g?mol24g

76g11.在标准压力下,已知H2O(l)(A)的沸点为373 K,C6H5Cl(l)(B)的沸点为403 K。水和氯苯在液态时完全不互溶,它们的共沸点为364 K。设一个氯苯的质量分数wB?0.20的水和氯苯的双液系统,在加热达到共沸时,完成下列问题。

(1)画出H2O(l)(A)和C6H5Cl(l)(B)的T?wB相图的示意图。

(2)指出在各相区中,平衡共存的相态及三相线上是由哪些相平衡共存。 (3)这种相图有什么实际用处?

解:因为水和氯苯在液态时完全不互溶,所以两液相共存的帽形区的两条边,就是两个纵坐标,即分别代表wB?0和wB?1在不同温度下两个液相的组成。在图上分别标出H2O(l)和C6H5Cl(l)的沸点,以及它们的共沸点,将两个沸点分别与共沸点连线,在共沸

点温度画出三相平衡线,就得相图如下

(2)在CED线以上,是气相单相区;在CFE范围内,是H2O(l)和气相两相区;在

DEG范围内,是C6H5Cl(l)和气相两相区;在FEG线以下,是H2O(l)和C6H5Cl(l)两相

区。在FEG线上,由H2O(l),C6H5Cl(l)和气三相共存。表示气相组成的E点的位置要根据混合蒸气的组成而定。

(3)这种相图可以用于有机物的水蒸气蒸馏,因为两种液体共沸的温度比H2O(l)的沸点还低,更比C6H5Cl(l)的沸点低,可以降低蒸馏温度,防止有机物分解。因为两种液体完全不互溶,馏出物很容易分离。

12.在大气压力下,液体A与液体B部分互溶,互溶程度随温度的升高而增大。液体A和B对Raoult定律发生很大的正偏差,在它们的T?wB的气-液相图上,在363 K出现最低恒沸点,恒沸混合物的组成为wB?0.70。液体A与液体B的T?wB的气-液相图,与液体A与B部分互溶形成的帽形区在363 K时重叠,在363 K的水平线上有三相共存:液体

A中溶解了B的溶液l1,其wB?0.10;液体B中溶解了A的溶液l2,其wB?0.85;以

及组成为wB?0.70的气-液组成相同的恒沸混合物。根据这些数据:

(1)画出液体A与液体B在等压下的T?wB的相图示意图。设液体A的沸点为

373 K,液体B的沸点为390 K。

(2)在各相区中,标明平衡共存的相态和自由度。

(3)在大气压力下,将由350 g液体A和150 g液体B组成的物系缓缓加热,在加热到接近363 K(而没有到达363 K)时,分别计算l1和l2两个液体的质量。

解:(1)根据题意,所画的相图示意图如下,

(2)CED线以上,是A和B的混合气体单相区,对于二组分系统,根据相律,条件

自由度f*?2;

CFA线以左,是液体A中溶解了B的溶液l1,单相区,fCFE线之内,是气体与溶液l1的两相平衡共存区,f**?2;

?1;

*DGB线以右,是液体B中溶解了A的溶液l2,单相区,fDEG线之内,是气体与溶液l2的两相平衡共存区,f*?2;

?1;

*FEG线以下,是溶液l1与溶液l2的两相平衡共存区,f?1;

(3)在由350 g液体A和150 g液体B组成的物系中,

150 g(150? wB??0.3 0350)g在wB?0.30的物系加热到接近363 K时,还是两个溶液组成的两相区,近似利用

363 K时两液相的组成,以wB?0.30为支点,利用杠杆规则,计算l1和l2两个液相的质量

m(l1)?(0.30?0.10)?m(l2)?(0.85?0.30) m(l1)?m(l2)?(350?150)g?500 g

解得, m(l1)?367, g m(l2)?133 g13.乙酸(A)与苯(B)的相图如下图所示。已知其低共熔温度为265 K,低共熔混合物中含苯的质量分数wB?0.64。

(1)指出各相区所存在的相和自由度。

(2)说明CE,DE,FEG三条线的含义和自由度。

(3)当wB?0.25(a点)和wB?0.75(b点)的熔液,自298 K冷却至250 K,指出冷却过程中的相变化,并画出相应的步冷曲线。

解: (1)CED线以上,是熔液单相区,根据相律,条件自由度为 f*?C?1?P?2?1?1? 2 CFE线之内,乙酸固体与熔液两相共存,条件自由度f*?1。 EDG线之内,苯固体与熔液两相共存,条件自由度f*?1。

在FEG线以下,苯的固体与乙酸固体两相共存,条件自由度f*?1。 (2)CE线,是乙酸固体的饱和溶解度曲线,条件自由度f*?1; DE线,是苯固体的饱和溶解度曲线,条件自由度f*?1;

在FEG线上,苯固体、乙酸固体与组成为E的熔液三相共存,条件自由度f*?0。

(3)

abTabt

自298 K,从a点开始冷却,温度均匀下降,是熔液单相。与CE线相交时,开始有乙酸固体析出,温度下降斜率变小,步冷曲线出现转折。继续冷却,当与FEG线相交时,乙酸固体与苯固体同时析出,熔液仍未干涸,此时三相共存,条件自由度f*?0,步冷曲线上出现水平线段,温度不变。继续冷却,熔液干涸,乙酸固体与苯固体两相共存,温度又继续下降。

从b点开始冷却的步冷曲线与从a点开始冷却的基本相同,只是开始析出的是苯固体,其余分析基本相同。

14.水(A)与NaCl(B)的相图如下。C点表示不稳定化合物NaCl?2H2O(s),在264 K时,不稳定化合物分解为NaCl(s)和组成为F的水溶液。

(1)指出各相区所存在的相和自由度。 (2)指出FG线上平衡共存的相和自由度。

(3)如果要用冷却的方法得到纯的NaCl?2H2O(s),溶液组成应落在哪个浓度范围之内为好?

(4)为什么在冰水平衡系统中,加入NaCl(s)后可以获得低温?

解: (1)在DEF线以上,溶液单相区,根据相律,条件自由度f?2; DIE区,H2O(s)与溶液两相共存,f?1;

EFHJ区,NaCl?2H2O(s)与溶液两相共存,f?1; HCBG区,NaCl?2H2O(s)与NaCl(s)两相共存,f?1;

**** FHG线以上,NaCl(s)与溶液两相共存,f*?1;

IEJ线以下,H2O(s)与NaCl?2H2O(s)两相共存,f*?1。

(2)在FG线上,NaCl?2H2O(s)、NaCl(s)与组成为F的溶液三相共存,条件自由度f*?0。

(3)如果要得到纯的NaCl?2H2O(s),溶液组成应落在与EF所对应的浓度范围之内,并且温度不能低于253 K,以防有冰同时析出。如果在FH对应的浓度范围之内,开始有

NaCl(s)析出,要在冷却过程中再全部转化成NaCl?2H2O(s),不太容易。

(4)在冰与水的平衡系统中加入NaCl(s)后,会形成不稳定水合物NaCl?2H2O(s),冰与NaCl?2H2O(s)有一个低共熔点,温度在253 K左右(实验值为252 K),所以随着

NaCl(s)的加入,温度会不断下降,直至252 K,形成H2O(s)、NaCl?2H2O(s)和饱和溶

液三相共存的系统。

15.(1)简要说出在如下相图中,组成各相区的相。

(2)根据化合物的稳定性,说出这三个化合物属于什么类型的化合物? (3)图中有几条三相平衡线,分别由哪些相组成。

解:

(1)1区,溶液(l)单相;2区,3区,AB(s)?l两相;4区,A(s)?AB(s)A(s)?l两相;两相;5区,AB2(s)?l两相;6区,AB(s)?AB2(s)两相;7区,AB3(s)?l两相;8区,

AB2(s)?AB3(s)两相;9区,固溶体?(s)单相;10区,?(s)?l两相;11区,固溶体?(s)单相;12区,?(s)?l两相;13区,?(s)??(s)两相;

(2)AB(s)和AB2(s)是不稳定化合物,AB3(s)是稳定化合物。

(3)共有4条三相平衡线,相应的组成为:cd线,由A(s),AB(s)和熔液三相组成;

ef线,由AB(s),AB2(s)和组成为e的熔液组成;gh线,由AB2(s),AB3(s)和组成为

g的熔液组成;jk线,由组成为j的固溶体?(s)、组成为k的固溶体?(s)和熔液组成;

16.在大气压力下,有如下热分析数据:

(A)LiCl(s)与KCl(s)在高温熔融时能完全互溶,但是在低温时两固体完全不互溶。 (B)LiCl(s)的熔点为878 K,KCl(s)的熔点为1049 K。两者形成的低共熔点的温度为629 K,低共熔混合物中,含KCl(s)的质量分数wB?0.50。

(C)用wB?0.43的熔化物作步冷曲线,在723 K时曲线斜率变小,有LiCl(s)析出。 (D)用wB?0.63的熔化物作步冷曲线,在723 K时曲线斜率变小,有KCl(s)析出。 根据这些热分析数据,

(1)画出以温度为纵坐标,质量分数为横坐标的LiCl(s)(A)与KCl(s)(B)的二组分低共熔的T?wB相图的草图。

(2)说出在各相区中,相的组成和条件自由度。 (3)分析图中各相线的组成和条件自由度。

(4)说出工业上用电解的方法,从LiCl(s)制备金属Li(s)时,要加入KCl(s)的原因。 解:根据已知条件,画出的的T?wB相图的草图如下:

(2)在CED线以上,是熔液单相区,根据相律,条件自由度

f*?C?1?P?2?1?1?2

在CFE范围之内,是LiCl(s)与熔液两相区,f*?1。 在DGE范围之内,是KCl(s)与熔液两相区,f*?1 在FEG线以下,是LiCl(s)和KCl(s)的两相区,f?1。

(3)曲线CE是与LiCl(s)平衡共存的熔液组成随温度的变化曲线,根据相律,f?1,温度和组成只有一个可以改变。

曲线DE是与KCl(s)平衡共存的熔液组成随温度的变化曲线,f?1。 水平线FEG是LiCl(s),KCl(s)与组成为E的熔液三相平衡共存线,f?0。 (4)由于LiCl(s)的熔点比较高,电解LiCl(s)时耗能较多,加入等量KCl(s)后,可以使LiCl(s)的熔点从878 K降到629 K,节省了能耗,也使操作难度降低。

17.根据以下热分析数据,画出以温度为纵坐标,质量分数为横坐标的Ni(s)(A)与

Mo(s)(B)的二组分低共熔的T?wB相图的草图。已知

****(1)金属Ni(s)的相对原子质量为58.69,熔点为1728 K;金属Mo(s)的相对原子质量为95.94,熔点为2898 K。

(2)Ni(s)和Mo(s)可以形成化合物NiMo(s),该化合物在1620 K时分解成Mo(s)和wB?0.53的熔液。

(3)在1573 K时有唯一的最低共熔点,这时由NiMo(s),wB?0.48的熔液和wB?0.32的固溶体三相平衡共存,固溶体中的Mo含量随温度的下降而下降。

解:从Ni(s)和Mo(s)的相对原子质量,可以计算化合物NiMo(s)中Mo的质量分数,可以确定化合物NiMo(s)的位置。

wB?95.9495.9?4?0.6 258.69从化合物在1620 K时分解成Mo(s)和wB?0.53的熔液,说明NiMo(s)是个不稳定化合物。

根据热分析数据,所画的相图草图如下。

18.在大气压力下,H2O(A)与NaCl(B)组成的二组分系统在252 K时有一个低共熔点,此时由H2O(s),NaCl?2H2O(s)和wB?0.223的NaCl水溶液三相共存。264 K时,不稳定化合物NaCl?2H2O(s)(C)分解为NaCl(s)和wB?0.27的NaCl水溶液。已知:Cl的相对原子质量为35.5,Na为23.0;NaCl(s)在水中的溶解度受温度的影响不大,温度升高溶解度略有增加。

(1)试画出H2O(A)与NaCl(B)组成的二组分系统的T?wB相图的草图,并分析各相区的相态。

(2)若有1.0 kg的wB?0.28的NaCl水溶液,由433 K时冷却到265 K,试计算能分

离出纯的NaCl(s)的质量。

(3)若用wB?0.025的海水,用冷却的方法制备淡水,问需冷却到什么温度可以得到最多的淡水?

解:(1)在不稳定化合物NaCl?2H2O(s)中,含NaCl(s)的质量分数 wB?m(NaCl)m(NaC?l)m?(HO)258.5?0.6 2?58.536则在T?wB图的wB?0.62处作一垂线,垂线的高度到不稳定化合物的分解温度264 K时为止。在264 K处画一水平线,线的右端与表示wB?1.0的纵坐标相交,左端到水溶液组成为wB?0.27处为止,用点F表示。

在低共熔温度252 K处作一水平线,线的左端与wB?0的代表纯水的纵坐标相交,右端与wB?0.62的代表不稳定化合物C的垂线相交。在代表纯水的纵坐标273 K处标出H2O(s)的熔点D,在低共熔温度252 K的水平线上标出wB?0.223的溶液组成E。

将D点与E点相连,为水的冰点下降曲线。将E点与F点相连,为不稳定化合物C的溶解度随温度的变化曲线。从F点向上作斜线,代表NaCl(s)的溶解度随温度上升略有增加的溶解度曲线。所画相图为

在相图中,各相区的相态为:在DEF线以上,是NaCl不饱和水溶液的单相区;在DIE范围内,是H2O(s)与溶液两相区;在FEJH范围内,是NaCl?2H2O(s)与溶液两相区;在IEJ线以下,是H2O(s)与NaCl?2H2O(s)两相区;在FHG线以上,是NaCl(s)与溶液两相区;在HJC线以右,是NaCl?2H2O(s)与NaCl(s)两相区。

(2)当1.0 kg的wB?0.28的NaCl水溶液,由433 K时冷却到265 K时(刚好在,析出的NaCl?2H2O(s)的转熔温度之上,但是物系的组成可以借用转熔温度时的组成) NaCl(s)的量,可利用杠杆规则求算。设溶液和NaCl(s)的质量分别为m(l)和m(NaCl),

m(l)(0.?280?.2m7) .(Na?Cl)(1 01. m(l)?m(NaC?l)解得 m(NaC?l)13 .7(3)若用冷却的方法,从海水制备淡水,实际就是先得到冰,则将海水冷却到低共熔温度252 K上面一点点,可以得到最多的H2O(s),也就制得最多的淡水。若知道所用海水的量,也可以用杠杆规则计算所得H2O(s)的量。