CASTEP¼ÆËãÀíÂÛ×ܽá+ʵÀý·ÖÎö - ͼÎÄ ÏÂÔØ±¾ÎÄ

CASTEP¼ÆËãÔ­Àí---------XBAPRS

CASTEP¼ÆËãÀíÂÛ×ܽá

XBAPRS

CASTEPÌØµãÊÇÊʺÏÓÚ¼ÆËãÖÜÆÚÐԽṹ£¬¶ÔÓÚ·ÇÖÜÆÚÐԽṹһ°ãÒª½«Ìض¨µÄ²¿·Ö×÷ΪÖÜÆÚÐԽṹ£¬½¨Á¢µ¥Î»¾§°ûºó·½¿É½øÐмÆËã¡£CASTEP¼ÆËã²½Öè¿ÉÒÔ¸ÅÀ¨ÎªÈý²½£ºÊ×ÏȽ¨Á¢ÖÜÆÚÐÔµÄÄ¿±êÎïÖʵľ§Ì壻Æä´Î¶Ô½¨Á¢µÄ½á¹¹½øÐÐÓÅ»¯£¬Õâ°üÀ¨Ìåϵµç×ÓÄÜÁ¿µÄ×îС»¯ºÍ¼¸ºÎ½á¹¹Îȶ¨»¯¡£×îºóÊǼÆËãÒªÇóµÄÐÔÖÊ£¬Èçµç×ÓÃܶȷֲ¼(Electron density distribution)£¬ÄÜ´ø½á¹¹(Band structure)¡¢×´Ì¬Ãܶȷֲ¼(Density of states)¡¢Éù×ÓÄÜÆ×(Phonon spectrum)¡¢Éù×Ó״̬Ãܶȷֲ¼(DOS of phonon)£¬¹ìµÀȺ·Ö²¼(Orbital populations)ÒÔ¼°¹âѧÐÔÖÊ(Optical properties)µÈ¡£±¾ÎÄÖ÷Òª½«¾Í¸÷¸ö²½ÖèÖеļÆËãÔ­Àí½øÐвûÊö£¬²¢½áºÏ×÷Õß¶Ô¼ÆËãʵ¼ù¾­Ñ飬ÔÚÎÄÕÂ×îºó¸ø³öÁ˼¸¸ö¼ÆËãÊÂÀý£¬ÒÔ±¸²Î¿¼¡£ CASTEP¼ÆËã×ÜÌåÉÏÊÇ»ùÓÚDFT£¬µ«ÊµÏÖÔËËã¾ßÌåÀíÂÛÓУº Àë×ÓʵÓë¼Ûµç×ÓÖ®¼äÏ໥×÷ÓòÉÓÃØÍÊÆÀ´±íʾ£» ³¬¾§°ûµÄÖÜÆÚÐԱ߽çÌõ¼þ£»

Æ½Ãæ²¨»ù×éÃèÊöÌåϵµç×Ó²¨º¯Êý£»

¹ã·º²ÉÓÿìËÙfast Fourier transform (FFT) ¶ÔÌåϵ¹þÃܶÙÁ¿½øÐÐÊýÖµ»¯¼ÆË㣻 Ìåϵµç×Ó×ÔÇ¡ÄÜÁ¿×îС»¯²ÉÓõü´ø¼ÆËãµÄ·½Ê½£»

²ÉÓÃ×îÆÕ±éʹÓõĽ»»»-Ïà¹Ø·ºº¯ÊµÏÖDFTµÄ¼ÆË㣬·ºº¯º¬¸ÅÁ˾«È·ÐÎʽºÍÆÁ±ÎÐÎʽ¡£ Ò»£¬ CASTEPÖÐÖÜÆÚÐԽṹ¼ÆËãÓŵã

ÓëMSÖÐÆäËû¼ÆËã°ü²»Í¬£¬·ÇÖÜÆÚÐԽṹÔÚCASTEPÖв»ÄܽøÐмÆËã¡£½«¾§Ãæ»ò·ÇÖÜÆÚÐԽṹÖÃÓÚÒ»¸öÓÐÏÞ³¤¶È¿Õ¼ä·½ºÐÖУ¬°´ÕÕÖÜÆÚÐԽṹÀ´´¦Àí£¬ÖÜÆÚÐԿռ䷽ºÐÐÎ״ûÓÐÏÞÖÆ¡£Ö®ËùÒÔ²ÉÓÃÖÜÆÚÐԽṹԭÒòÔÚÓÚ£ºÒÀ¾ÝBloch¶¨Àí£¬ÖÜÆÚÐԽṹÖÐÿ¸öµç×Ó²¨º¯Êý¿ÉÒÔ±íʾΪһ¸ö²¨º¯ÊýÓë¾§ÌåÖÜÆÚ²¿·Ö³Ë»ýµÄÐÎʽ¡£ËûÃÇ¿ÉÒÔÓÃÒÔ¾§Ìåµ¹Ò×µãÕóʸÁ¿Îª²¨Ê¸Ò»ÏµÁзÖÀëÆ½Ãæ²¨º¯ÊýÀ´Õ¹¿ª¡£ÕâÑùÿ¸öµç×Ó²¨º¯Êý¾ÍÊÇÆ½Ã沨ºÍ£¬µ«×îÖ÷ÒªµÄÊÇ¿ÉÒÔ¼«´ó¼ò»¯Kohn-Sham·½³Ì¡£ÕâÑù¶¯ÄÜÊǶԽǻ¯µÄ£¬Óë¸÷ÖÖÊÆº¯Êý¿ÉÒÔ±íʾΪÏàÓ¦FourierÐÎʽ¡£

?[k?G?2?V(G?G)?V(G?G)?V(G?G)]C??C``ionHxcii,k?GGGi,k?G```

²ÉÓÃÖÜÆÚÐԽṹµÄÁíÒ»¸öÓŵãÊÇ¿ÉÒÔ·½±ã¼ÆËã³öÔ­×ÓÎ»ÒÆÒýÆðµÄÕûÌåÄÜÁ¿µÄ±ä»¯£¬ÔÚCASTEPÖÐÒýÈëÍâÁ¦

»òѹǿ½øÐмÆËãÊǺܷ½±ãµÄ£¬¿ÉÒÔÓÐЧʵʩ¼¸ºÎ½á¹¹ÓÅ»¯ºÍ·Ö×Ó¶¯Á¦Ñ§µÄÄ£Äâ¡£Æ½Ãæ²¨»ù×é¿ÉÒÔÖ±½Ó´ïµ½ÓÐЧµÄÊÕÁ²¡£

¼ÆËã²ÉÓ󬾧°û½á¹¹µÄÒ»¸öȱµãÊǶÔÓÚijЩÓе¥µãÏÞȱÏݽṹ½¨Á¢Ä£ÐÍʱ£¬ÌåϵÖеĵ¥¸öȱÏݽ«ÒÔÎÞÏÞȱÏÝÕóÁÐÐÎʽ³öÏÖ£¬Òò´ËÔÚ½¨Á¢ÈËΪȱÏÝʱ£¬ËüÃÇÖ®¼äµÄÏ໥¾àÀëÓ¦¸Ã×ã¹»µÄÔ¶£¬±ÜÃâȱÏÝÖ®¼äÏ໥×÷ÓÃÓ°Ïì¼ÆËã½á¹û¡£ÔÚ¼ÆËã±íÃæ½á¹¹Ê±£¬ÇÐÆ¬Ä£ÐÍÓ¦µ±×ã¹»µÄ±¡£¬¼õСÇÐÆ¬¼äµÄÈËΪÏ໥×÷ÓᣠCASTEPÖвÉÓõĽ»»»-Ïà¹Ø·ºº¯ÓоÖÓòÃܶȽüËÆ£¨LDA£©£¨LDA£©¡¢¹ãÒåÌݶȽüËÆ£¨GGA£©ºÍ·Ç¶¨Óò½»»»-Ïà¹Ø·ºº¯¡£CASTEPÖÐÌṩµÄΨһ¶¨Óò·ºº¯ÊÇCA-PZ£¬Perdew and Zunger½«Ceperley and AlderÊýÖµ»¯½á¹û½øÐÐÁ˲ÎÊýÄâºÍ¡£½»»»-Ïà¹Ø·ºº¯µÄ¶¨Óò±íʾÐÎʽÊÇĿǰ½ÏΪ׼ȷµÄÒ»ÖÖÃèÊö¡£

Name Description

PW91 Perdew-Wang generalized-gradient approximation, PW91 PBE Perdew-Burke-Ernzerhof functional, PBE

RPBE Revised Perdew-Burke-Ernzerhof functional, RPBE

Reference Perdew and Wang Perdew et al. Hammer et al.

1

CASTEP¼ÆËãÔ­Àí---------XBAPRS

²ÉÓÃÌݶÈУÕýµÄ·Ç¶¨Óò»ò¹ãÒåÌݶȽüËÆ·ºº¯Óëµç×ÓÃܶÈÌݶÈ

d?drºÍµç×ÓÃܶÈ?¶¼Óйأ¬ÕâÑù¿ÉÒÔ

ͬʱÌá¸ßÄÜÁ¿ºÍ½á¹¹Ô¤²âµÄ׼ȷÐÔ£¬µ«¼ÆËãºÄʱ¡£CASTEPÖÐÌṩµÄ·Ç¶¨Óò·ºº¯ÓÐÈýÖÖ£ºPBE·ºº¯ÓëPW91·ºº¯¼ÆËãÔÚ±¾ÖÊÉÏʵ¼ÊÊÇÏàͬµÄ£¬µ«ÔÚµç×ÓÃܶȱ仯ѸËÙÌåϵÖÐPBE·ºº¯ÊµÓÃÐÔ¸üºÃ£»RPBEÊÇÌØ±ðÓÃÀ´Ìá¸ßDFTÃèÊö½ðÊô±íÃæÎü¸½·Ö×ÓÄÜÁ¿µÄ·ºº¯£¬White and BirdÃèÊöÁ˸÷ÖÖÌݶÈУÕý·ºº¯¼ÆËã·½·¨£¬ÀûÓùãÒåÌݶȽüËÆ¼ÆËã×ÜÄÜÁ¿Ê¹ÓÃÆ½Ã沨»ù×éÓ붨Óò·ºº¯Ïà±È²¢²»Ö±½Ó¡£°üº¬ÌݶȽüËÆµÄ½»»»-Ïà¹Ø·ºº¯¼ÆËãʱ¶Ôµç×ÓÃܶÈÊý¾ÝµÄ¾«¶ÈÒªÇó½Ï¸ß£¬¶Ô¼ÆËã»úÄÚ´æÕ¼ÓûáÔö´ó¡£Í¨¹ý²ÉÓÃÓëÆ½Ãæ²¨»ù×é×ÜÄÜÁ¿¼ÆËãÖзÖÁѽ»»»-Ïà¹ØÄÜÁ¿²ÉÓÃһϵÁпռäÍø¸ñÏàÒ»Öµķ½·¨À´¶¨Òå½»»»-Ïà¹ØÊÆ¡£

Æ½Ãæ²¨»ù×飨Plane wave basis set£©

BlochÀíÂÛ±íÃ÷ÿ¸ökµã´¦µç×Ó²¨º¯Êý¶¼¿ÉÒÔÕ¹¿ª³ÉÀëÉ¢µÄÆ½Ãæ²¨»ù×éÐÎʽ£¬ÀíÂÛÉϽ²ÕâÖÖÕ¹¿ªÐÎʽ

2

°üº¬µÄÆ½Ãæ²¨ÊýÁ¿ÊÇÎÞÏÞ¶àµÄ¡£È»¶øÏà¶ÔÓÚ¶¯ÄܽϴóµÄÇé¿ö£¬¶¯ÄÜ|k+G|ºÜÐ¡Ê±Æ½Ãæ²¨ÏµÊýCk+G¸üÖØÒª¡£µ÷½ÚÆ½Ãæ²¨»ù×飬ÆäÖаüº¬µÄÆ½Ãæ²¨¶¯ÄÜСÓÚij¸öÉ趨µÄ½ØÖ¹ÄÜÁ¿£¬ÈçͼËùʾ£¨ÇòÌå°ë¾¶Óë½ØÖ¹ÄÜÁ¿Æ½·½¸ù³É±ÈÀý£©£º

×ÜÄÜÁ¿¼ÆËã»áÒòÎªÆ½Ãæ²¨Ìض¨ÄÜÁ¿½ØÖ¹¶ø²úÉúÎó²î£¬Í¨¹ýÔö¼ÓÌåϵÄÜÁ¿½ØÖ¹ÊýÖµ¾Í¿ÉÒÔ¼õСÎó²î·ù¶È¡£ÀíÂÛÉϽØÖ¹ÄÜÁ¿±ØÐëÌá¸ßµ½×ÜÄÜÁ¿¼ÆËã½á¹û´ïµ½É趨µÄ¾«È·¶ÈΪֹ£¬Èç¹ûÄãÔÚ½øÐйØÓÚÏàÎȶ¨ÐÔµÄÑо¿£¬¶øÐèÒª¶Ô±Èÿ¸öÏàÄÜÁ¿µÄ¾ø¶Ôֵʱ£¬ÕâÊÇÒ»ÖÖÍÆ¼ö¼ÆËã·½·¨¡£²»¹ý£¬Í¬Ò»¸ö½á¹¹Ôڵ͵ĽØÖ¹ÄÜÁ¿ÏÂÊÕÁ²ÒýÆðµÄ²î±ðҪСÓÚ×ÜÌåÄÜÁ¿±¾Éí¡£Òò´Ë¿ÉÒÔÑ¡ÓúÏÊÊµÄÆ½Ã沨»ù×é¶Ô¼¸ºÎ½á¹¹½øÐÐÓÅ»¯»ò½øÐзÖ×Ó¶¯Á¦Ñ§Ñо¿¡£ÒÔÉϵķ½·¨¶ÔBrillouinÇøÈ¡ÑùÊÕÁ²²âÊÔͬÑù³ÉÁ¢¡£

ÓÐÏÞÆ½Ã沨»ù×éµÄУÕý

²ÉÓÃÆ½Ã沨»ù×éµÄÒ»¸öÎÊÌâÊǽØÖ¹ÄÜÁ¿Óë»ù×éÊýÁ¿µÄ±ä»¯ÊǼä¶ÏµÄ£¬Ò»°ã¶øÑÔÔÚ£ëµã»ù×飨k-point set£©Öв»Í¬£ëµã¶ÔÓ¦²»Í¬ÄÜÁ¿½ØÖ¹£¨cutoffs£©Ê±¾Í»á²úÉúÕâÖÖ²»Á¬ÐøÐÔ¡£´ËÍ⣬ÔÚ½ØÖ¹ÄÜÁ¿²»±äʱ£¬¾§°ûÐÎ×´ºÍ³ß´çµÄ±ä»¯¶¼»áÒýÆðÆ½Ãæ²¨»ù×éµÄ¼ä¶Ï¡£Í¨¹ý²ÉÓøü¼ÓÖÂÃܵģëµã»ù×é¾Í¿ÉÒÔ½â¾öÕâ¸öÎÊÌ⣬ÓëÌØ¶¨Æ½Ã沨»ù×éÏà¹ØµÄ¼ÓȨÐÔÒ²»áÏû³ý¡£È»¶ø¼´Ê¹ÔÚ£ë»ù×éÈ¡ÑùºÜÖÂÃܵÄÇé¿öÏ£¬Õâ¸öÎÊÌâÒÀÈ»´æÔÚ£¬¶ÔÆä½üËÆµÄ½â¾ö·½·¨¾ÍÊÇÒýÈëÒ»¸öУÕýÒò×Ó£¨correction factor£©£¬ÀûÓÃij¸ö״̬»ù×鼯ËãʹÓÃÁËÎÞÏÞÊýÁ¿µÄ£ëµãÓëʵ¼Ê²ÉÓõÄÊýÁ¿Ö®¼äµÄ²î±ðÀ´È·¶¨¡£¾§Ìå½á¹¹ÔÚ½øÐм¸ºÎÓÅ»¯Ê±Èç¹û»ù×é²»ÄÜÕæÕýµÄ´ïµ½¾ø¶ÔµÄÊÕÁ²£¬ÓÐÏÞ»ù×éµÄ¾ÀÕý¾ÍºÜÖØÒª¡£±ÈÈç¹èµÄ¹æ·¶£­±£ÊØØÍÊÆºÜ¡°Èí¡±£¬ÔÚÆ½Ã沨»ù×齨ֹÄÜÁ¿ÊÇ£²£°£°£å£Öʱ¾ÍÒѾ­¿ÉÒԵõ½×¼È·µÄ¼ÆËã½á¹ûÁË¡£µ«Èç¹û¼ÆËã״̬·½³ÌʱʹÓÃÉÏÊö½ØÖ¹ÄÜÁ¿£¨±ÈÈçÌå»ýÓë×ÜÄÜÁ¿ºÍѹǿ¶¼ÓйØÏµ£©£¬ÄÜÁ¿×îСʱ¶ÔÓ¦µÄÌå»ýÓëÌåϵÄÚѹΪÁãʱ¶ÔÓ¦Ìå»ýÊDz»Í¬µÄ¡£ÔÚÌá¸ß½ØÖ¹ÄÜÁ¿ºÍÔö¼Ó£ëµãÈ¡Ñù»ù´¡ÉÏÖØ¸´¶Ô״̬·½³ÌµÄ¼ÆË㣬ÕâÁ½¸öÌå»ýÖ®¼äµÄ²î±ð»áÔ½À´Ô½Ð¡¡£´ËÍâ½ØÖ¹ÄÜÁ¿

2

CASTEP¼ÆËãÔ­Àí---------XBAPRS

µÍʱ¼ÆËãµÃµ½µÄE-VÇúÏß³ÊÏÖ¾â³Ý×´£¬Ìá¸ß½ØÖ¹ÄÜÁ¿¼ÆËãµÄÇúÏßÁ¬Ðø¶øÆ½»¬¡£E-VÇúÏßÖгöÏÖ¾â³Ý×´µÄÔ­ÒòÔÚÓÚÆ½Ã沨»ù×éÔÚÏàͬµÄ½ØÖ¹ÄÜÁ¿Ê±ÓÉÓÚ¾§ÌåµãÕó³£Êý²»Í¬ÒýÆðµÄÆ½Ãæ²¨»ù×éÊýÁ¿µÄ¼ä¶Ï¡£¶Ô×ÜÄÜÁ¿½øÐÐÓÐÏÞ»ù×éµÄУÕý£¬Ê¹µÃÎÒÃÇ¿ÉÒÔÔÚÒ»¸öºã¶¨ÊýÁ¿»ù×é״̬ϽøÐмÆË㣬¼´Ê¹²ÉÓÃÁ˺㶨µÄ½ØÖ¹ÄÜÁ¿Õâ¸ö¸üÇ¿ÖÆÌõ¼þÒ²¿ÉÒÔ¾ÀÕý¼ÆËã½á¹û¡£MilmanµÈÏêϸµÄÌÖÂÛÁËÕâÖÖ¼ÆËã·½·¨µÄϸ½Ú¡£½øÐÐÕâÖÖУÕýËùÐèÒªµÄΨһµÄ²ÎÊý¾ÍÊÇdEtot/d lnEcut£¬EtotÊÇÌåϵ×ÜÄÜÁ¿£¬EcutÊǽØÖ¹ÄÜÁ¿¡£dEtot/d lnEcutµÄÖµºÜºÃµÄ±íʾÁËÄÜÁ¿½ØÖ¹ºÍ£ëµãÈ¡Ñù¼ÆËãÊÕÁ²ÐÔÖÊ¡£µ±ËüµÄÊýÖµ£¨Ã¿¸öÔ­×Ó£©Ð¡ÓÚ0.01 eV/atomʱ£¬¼ÆËã¾Í´ïµ½ÁËÁ¼ºÃµÄÊÕÁ²¾«¶È£¬¶ÔÓÚ´ó¶àÊý¼ÆËã0.1 eV/atom¾Í×ã¹»ÁË¡£

·Ç¶¨Óò½»»»-Ïà¹Ø·ºº¯

»ùÓÚLDA»òGGAµÄ·ºº¯µÄKohn-Sham·½³ÌÔÚ¼ÆËãÄÜ´ø´øÏ¶ÉÏ´æÔڵ͹À¡£Õâ¶Ô¾§Ìå»ò·Ö×ÓÏà¹ØÐÔÖÊÒÔ¼°ÄÜÁ¿µÄÃèÊöÊÇûÓÐÓ°ÏìµÄ¡£È»¶øÒªÀí½â°ëµ¼ÌåºÍ¾øÔµÌåÐÔÖÊ£¬¾Í±ØÐëµÃµ½¹ØÓÚµç×ÓÄÜ´ø½á¹¹µÄ׼ȷµÄÃèÊö¡£DFTÄÜ´ø´øÏ¶¼ÆËãÎó²î¿ÉÒÔͨ¹ýÒýÈë¾­Ñé¡°¼ôµ¶¡± УÕý£¬Ïà¶ÔÓÚ¼Û´ø¶øÑÔµ¼´ø²úÉúÁËÒ»¸ö¸ÕÐԵı仯¡£µ±ÊµÑéÌṩµÄÄÜ´ø´øÏ¶×¼È·Ê±£¬¹âѧÐÔÖʼÆËãµÃµ½Á˽ÏΪ׼ȷµÄ½á¹û¡£µç×ӽṹʵÑéÊý¾Ýȱ·¦Ê±²ÉÓá°¼ôµ¶¡±¹¤¾ß½øÐÐÔ¤²âÐÔÑо¿»ò¶ÔÄÜ´ø´øÏ¶µ÷ÕûÊDz»¿É¿¿µÄ¡£¹ØÓÚDFT¼ÆËãÖÐÄÜ´ø´øÏ¶ÎÊÌâÒѾ­·¢Õ¹Ðí¶à¼¼Êõ£¬µ«ÕâЩ¼¼Êõ´ó¶à¸´ÔÓ¶øÇҺܺÄʱ£¬Êµ¼Ê¼ÆËãÖÐ×î³£ÓõÄÊÇÆÁ±Î½»»»£¨Sx-LDA£©£¬½¨Á¢ÔÚ¹ãÒåKohn-Sham·½·¨»ù´¡ÉÏ¡£¹ãÒåKohn-Sham·ºº¯ÔÊÐíÎÒÃǽ«×ÜÄÜÁ¿½»»»·Ö²¼·ºº¯·ÖÀëΪ·Ç¶¨Óò¡¢¶¨ÓòÒÔ¼°ÆÁ±ÎÃܶÈ×éÔª¡£ÔÚCASTEP¼ÆËãÖвÉÓõĹãÒåKohn-Sham·½·¨ÓУº

? ? ? ?

HF: exact exchange, no correlation

HF-LDA: exact exchange, LDA correlation sX: screened exchange, no correlation

sX-LDA: screened exchange, LDA correlation

ÓëLDAºÍGGAÏà±ÈNo local functionals Ò²ÓÐһЩȱÏÝ¡£ÔÚÆÁ±Î½»»»·ºº¯Öв»´æÔÚÒÑÖªÐÎʽӦÁ¦ÕÅÁ¿±í´ï·½Ê½£¬Òò´ËûÓÐÍêÈ«µÄ·Ç¶¨ÓòÊÆ¿ÉÒÔÓÃÓÚµ¥Î»¾§°û½á¹¹ÓÅ»¯»ò½øÐÐNPT/NPH¶¯Á¦Ñ§¡£ÕâÑùÀûÓÃÕâЩ·ºº¯¼ÆËãµÄ¹âѧÐÔÖʺÜÓпÉÄÜÊDz»×¼È·µÄ¡£ÔÚ¹þÃܶÙÁ¿ÖÐÒýÈëÒ»¸öÍêÈ«·Ç¶¨Óò×éÔª¾Í¿ÉÒÔ½â¾öÕâ¸öÎÊÌ⣬Õâ¸ö¶îÍâµÄ¾ØÕóÔªÆÆ»µÁ˹âѧ¾ØÕóÔªËØÓÉλÖÃËã·ûת»»Îª¶¯Á¿Ëã·û³£Óñí´ïÐÎʽ£¬Ê¹µÃ¹þÃܶÙÁ¿¶ÔÒ׺ܸ´ÔÓ¡£

¹æ·¶±£ÊØØÍÊÆºÍ³¬ÈíØÍÊÆ

ØÍÊÆÊÇÀûÓÃÆ½Ã沨»ù×鼯ËãÌåϵ×ÜÄÜÁ¿ÖйؼüµÄÒ»¸ö¸ÅÄ¼Ûµç×ÓÓëÀë×Óʵ֮¼äÇ¿ÁҵĿâÂØÊÆÓÃÈ«ÊÆ±íʾʱÓÉÓÚÁ¦µÄ³¤³Ì×÷ÓúÜÄÑ׼ȷµÄÓÃÉÙÁ¿µÄFourier±ä»»×éÔª±íʾ¡£½â¾öÕâ¸öÎÊÌâµÄÁíÒ»ÖÖ·½·¨´ÓÌåϵµç×ӵIJ¨º¯ÊýÈëÊÖ£¬ÎÒÃǽ«¹ÌÌå¿´×÷¼Ûµç×ÓºÍÀë×ÓʵµÄ¼¯ºÏÌå¡£Àë×Óʵ²¿·ÖÓÉÔ­×Ӻ˺ͽôÃܽáºÏµÄоµç×Ó×é³É¡£¼Ûµç×Ó²¨º¯ÊýÓëÀë×Óʵ²¨º¯ÊýÂú×ãÕý½»»¯Ìõ¼þ£¬È«µç×ÓDFTÀíÂÛ´¦Àí¼Ûµç×ÓºÍоµç×Óʱ²ÉÈ¡µÈͬ¶Ô´ý£¬¶øÔÚØÍÊÆÖÐÀë×Óоµç×ÓÊDZ»¶³½áµÄ£¬Òò´Ë²ÉÓÃØÍÊÆ¼ÆËã¹ÌÌå»ò·Ö×ÓÐÔÖÊʱÈÏΪоµç×ÓÊDz»²ÎÓ뻯ѧ³É¼üµÄ£¬ÔÚÌåϵ½á¹¹½øÐе÷ÕûʱҲ²»Éæ¼°µ½Àë×ÓµÄоµç×Ó¡£ÎªÁËÂú×ãÕý½»»¯Ìõ¼þÈ«µç×Ó²¨º¯ÊýÖеļ۵ç×Ó²¨º¯ÊýÔÚÐ¾Çø¾çÁÒµÄÕñµ´£¬ÕâÑùµÄ²¨º¯ÊýºÜÄѲÉÓÃÒ»¸öºÏÊʵIJ¨Ê¸À´±í´ï¡£ÔÚØÍÊÆ½üËÆÖÐоµç×ÓºÍÇ¿ÁÒ¿âÂØÊÆÌæ´úΪһ¸ö½ÏÈõµÄØÍÊÆ×÷ÓÃÓÚһϵÁÐØÍ²¨º¯Êý¡£ØÍÊÆ¿ÉÒÔÓÃÉÙÁ¿µÄFourier±ä»»ÏµÊýÀ´±íʾ¡£ÀíÏëµÄØÍÊÆÔÚоµç×ÓÇøÓòÊÇûÓÐפµãµÄ£¬Òò´ËÐèÒªÆ½Ãæ²¨Ê¸ÊýÁ¿ºÜÉÙ¡£ÖÚËùÖÜÖªµÄÊÇÏÖÔÚ½«ØÍÊÆÓëÆ½Ãæ²¨Ê¸Ïà½áºÏ¶ÔÃèÊö»¯Ñ§¼üÊǺÜÓÐÓõġ£È«Àë×ÓÊÆµÄÉ¢ÉäÐÔÖÊ¿ÉÒÔͨ¹ý¹¹ÖþØÍÊÆµÃµ½ÖØÏÖ£¬¼Ûµç×Ó²¨º¯ÊýÏàλ±ä»¯Óëоµç×ӽǶ¯Á¿³É·ÖÓйأ¬Òò´ËØÍÊÆµÄÉ¢ÉäÐÔÖʾÍÓë¹ìµÀ½Ç¶¯Á¿ÊÇÏà¹ØµÄ¡£ØÍÊÆ×îÆÕ±é±í´ï·½Ê½ÊÇ£º

3

CASTEP¼ÆËãÔ­Àí---------XBAPRS

VNL = ? |lm> Vl

where |lm> are the spherical harmonics and Vl is the Pseudopotential for angular momentum l.ÔÚ²»Í¬½Ç¶¯Á¿Í¨µÀ¾ù²ÉÓÃͬһ¸öØÍÊÆÖµ³ÆÎª¶¨ÓòØÍÊÆ£¨Local Pseudopotential£©£¬¶¨ÓòØÍÊÆ¼ÆËãЧÂʸü¸ß£¬Ò»Ð©ÔªËزÉÓö¨ÓòØÍÊÆ¾Í¿ÉÒԴﵽ׼ȷÃèÊö¡£ØÍÊÆµÄÓ²¶È£¨hardness£©ÔÚØÍÊÆµÄÓ¦ÓÃÖÐÊÇÒ»¸öÖØÒªµÄ¸ÅÄµ±Ò»¸öØÍÊÆ¿ÉÒÔÓúÜÉÙµÄFourier±ä»»×éÔª¾Í¿ÉÒÔ׼ȷÃèÊöʱ³ÆÎª¡°ÈíØÍÊÆ¡±£¬Ó²ØÍÊÆÓë´ËÏà·´¡£ÔçÆÚ·¢Õ¹µÄ׼ȷ¹æ·¶±£ÊØØÍÊÆºÜ¿ì¾Í·¢ÏÖÔÚ¹ý¶ÉÔªËØºÍµÚÒ»ÖÜÆÚÔªËØ£¨C¡¢N¡¢O£¬µÈ£©ÖеÄÃèÊöÊ®·Ö¡°Ó²¡±£¬Ìá¸ß¹æ·¶±£ÊØØÍÊÆÊÕÁ²ÐÔÖʵĸ÷ÖÖ·½·¨¶¼ÒѾ­±»Ìá³ö£¬ÔÚCASTEPÖвÉÓÃÁËÓÉLinµÈÌá³öµÄ¶¯ÄÜÓÅ»¯¶øÀ´µÄ¹æ·¶±£ÊØØÍÊÆ¡£ VanderbiltÌá³öÁËÁíÒ»ÖÖ¸ü»ù±¾µÄ·½·¨£¬·Å¿í¹æ·¶±£ÊØØÍÊÆµÄÒªÇ󣬴ӶøÉú³É¸üÈíµÄØÍÊÆ¡£ÔÚ³¬ÈíØÍÊÆ·½·¨ÖУ¬Ð¾µç×ÓÇøµÄØÍÆ½Ãæ²¨º¯Êý¿ÉÒÔ¾¡¿ÉÄܵġ°Èí¡±£¬ÕâÑù½ØÖ¹ÄÜÁ¿¾Í¿ÉÒÔ´ó·ù¶ÈµÄ¼õÉÙ¡£³¬ÈíØÍÊÆÓë¹æ·¶±£ÊØØÍÊÆÏà±È³ýÁË¡°¸üÈí¡±ÒÔÍ⻹ÓÐÆäËüµÄÓŵ㣬ÔÚһϵÁÐÔ¤ÏÈÉ趨µÄÄÜÁ¿·¶Î§ÄÚÒÅ´«Ë㷨ȷ±£ÁËÁ¼ºÃµÄÉ¢ÉäÐÔÖÊ£¬´Ó¶øÊ¹ØÍÊÆ»ñµÃ¸üºÃ±ä»»ÐÔºÍ׼ȷÐÔ¡£³¬ÈíØÍÊÆÍ¨³£½«Íâ²¿Ð¾Çø°´Õռ۲㴦Àí£¬Ã¿¸ö½Ç¶¯Á¿Í¨µÀÖеÄÕ¼¾Ý̬¶¼°üº¬Á˸´ºÏʸ¡£ÕâÑù¾ÍÔö¼ÓÁËØÍÊÆµÄ±ä»»ÐÔºÍ׼ȷÐÔ£¬µ«Í¬Ê±ÊÇÒÔÏûºÄ¼ÆËãЧÂÊΪ´ú¼ÛµÄ¡£¿É×ªÒÆÐÔÊÇØÍÊÆµÄÖ÷ÒªÓŵ㡣ØÍÊÆÊÇͨ¹ý¹ÂÁ¢µÄÔ­×Ó»òÀë×ÓÌØ¶¨µÄµç×ÓÅŲ¿×´Ì¬Ï¹¹½¨µÄ£¬Òò´Ë¿ÉÒÔ׼ȷµÄÃèÊöÔ­×ÓÔÚÄÇÐ©ÌØ¶¨ÅŲ¿ÏÂÐ¾ÇøµÄÉ¢ÉäÐÔÖÊ¡£ÔÚÏàÓ¦Ìõ¼þϲúÉúµÄØÍÊÆ¿ÉÒÔÓÃÓÚ¸÷ÖÖÔ­×Óµç×ÓÅŲ¿×´Ì¬ÒÔ¼°¸÷ÖÖ¸÷ÑùµÄ¹ÌÌåÖУ¬Í¬ÑùҲȷ±£ÁËÔÚ²»Í¬µÄÄÜÁ¿·¶Î§ÄÚ¾ßÓÐÕýÈ·µÄÉ¢Éä״̬¡£Milman¸ø³öÁ˲»Í¬»¯Ñ§»·¾³ºÍһϵÁнṹÖвÉÓÃØÍÊÆÃèÊö׼ȷÐÔÊÂÀý¡£·Ç¶¨ÓòØÍÊÆ¼´Ê¹ÔÚ×îÓÐЧÀëÉ¢±íʾÇé¿öÏ£¬ÌåϵÄÜÁ¿ØÍÊÆ¼ÆËãÒÀȻռÓÃÁË´óÁ¿¼ÆËãʱ¼ä¡£´ËÍ⣬ÔÚµ¹Ò×µãÕó¿Õ¼ä²ÉÓ÷Ƕ¨ÓòØÍÊÆ»áÒòÔ­×ÓÊýÄ¿Ôö¶à¶øºÄʱÒÔÔ­×ÓÁ¢·½ÊýÔö´ó£¬Òò´Ë¶ÔÓÚ´óÌåϵÊǺÜÊÊÓõġ£ØÍÊÆ·Ç¶¨ÓòÐÔÊÇÖ¸Ö»ÓÐÔÚ³¬¹ýÔ­×ÓÐ¾ÇøÊ±Ëü²Å»áÀ©Õ¹£¬ÓÉÓÚÐ¾ÇøÊǺÜСµÄ£¬ÌرðÊǵ±Ìåϵ°üº¬ÓÐÐí¶àµÄÕæ¿ÕÇ»Ìåʱ£¬ÔÚʵ¿Õ¼ä²ÉÓÃØÍÊÆÀ´¼ÆËã¾ÍÓкܴóµÄÓÅÊÆ¡£Õâʱ¼ÆËãÁ¿ËæÌåϵÖÐÔ­×ÓÊýĿƽ·½Ôö³¤£¬Òò´ËÊǺÜÊʺϴóÌåϵ¼ÆËãµÄ¡£½«µç×Ó»®·ÖΪоµç×Ӻͼ۵ç×ÓÔÚ´¦Àí½»»»-Ïà¹ØÏ໥×÷ÓÃʱ»á²úÉúÐÂÎÊÌ⣬ÔÚÔ­×ÓÐ¾ÇøÁ½¸öÑÇÌåϵµþ¼ÓÔÚØÍÊÆ²úÉú¹ý³ÌÖкÜÄÑÍêȫȥÆÁ±Î¡£ÔÚØÍÊÆÄÜÁ¿Ëã·ûÖÐÓëµç×ÓÃܶȴæÔÚ·ÇÏßÐιØÏµµÄÏî¾ÍÊǽ»»»-Ïà¹ØÄÜ¡£LouieµÈ²ÉÓÃÁËÒ»ÖÖ¼òµ¥µÄ·½·¨À´´¦Àíоµç×Ӻͼ۵ç×ÓÃܶÈÖ®¼ä·ÇÏßÐԵĽ»»»-Ïà¹ØÄÜ¡£ÕâÖÖ·½·¨Ôںܴó³Ì¶ÈÉÏÌá¸ßÁËØÍÊÆµÄ¿É±ä»»ÐÔ£¬ÌرðÊÇ×ÔÐý¼«»¯µÄ¼ÆËã¸üΪ׼ȷ¡£µ±×¼Ð¾Çøµç×Ó²»Äܼòµ¥´¦ÀíΪ¼Ûµç×Óʱ·ÇÏßÐÔºËУÕý¾ÍºÜÖØÒª¡£ÁíÒ»·½Ã潫ËûÃǼòµ¥µØ°üº¬ÔÚ¼Û²ãÑÇÌåϵÖдӱ¾ÖÊÉÏ¿ÉÒÔ±ÜÃâNLCC´¦ÀíµÄ±ØÒªÐÔ¡£

¹æ·¶±£ÊØØÍÊÆ£º

²ÉÓÃØÍÊÆ¼ÆËã¹Ø¼üÔÚÓÚ¿ÉÒÔÓÐЧµÄ¶Ô»¯Ñ§¼üµÄ¼Ûµç×Ó½øÐпÉÔÙÏֵĽüËÆ£¬ØÍÊÆÓëÈ«ÊÆÔÚ³¬¹ýÀë×Óʵ°ë¾¶ÒÔºó¾ßÓÐÍêÈ«ÏàͬµÄº¯ÊýÐÎʽ¡£

Figure 1. Schematic representation of the all-electron and pseudized wave functions and potentials

Á½¸öº¯Êýƽ·½·ù¶ÈµÄ»ý·ÖÊýÖµÓ¦¸ÃÊÇÏàͬµÄ£¬ÕâµÈͬÓÚÒªÇóØÍÊÆ²¨º¯Êý¾ßÓй淶-±£ÊØÐÔ£¬±ÈÈçÿ¸öØÍ²¨º¯ÊýÖ»ÄÜÃèÊöÒ»¸öµç×ÓµÄÐÐΪ¡£ÕâÑùµÄÌõ¼þ¾ÍÈ·±£ÁËØÍÊÆ¿ÉÒÔÔÙÏÖÕýÈ·µÄÉ¢Éä

(Scattering Properties)ÐÔÖÊ¡£ Éú³ÉØÍÊÆµÄµäÐÍ·½·¨ÈçÏÂËùÊö£ºÑ¡Ôñij¸öÌØ¶¨µÄµç×ÓÅŲ¿×´Ì¬£¨²»Ò»¶¨¾Í

4

CASTEP¼ÆËãÔ­Àí---------XBAPRS

ÊÇ»ù̬£©È«²¿µç×Ó¼ÆËãÔÚÒ»¸ö¹ÂÁ¢µÄÔ­×ÓÖнøÐС£´Ó¶øµÃµ½Ô­×Ó¼Ûµç×ÓÄÜÁ¿±¾Õ÷ÖµºÍ¼Ûµç×Ó²¨º¯Êý¡£Ñ¡ÔñÒ»¸öÀë×ÓØÍÊÆ»òØÍ²¨º¯Êý²ÎÊýÐÎʽ£¬Í¨¹ý¶Ô²ÎÊýµÄµ÷½Ú£¬Ê¹µÃØÍÔ­×Ó¼ÆËãºÍÈ«µç×ÓÔ­×ÓØÍÊÆ¼ÆËã²ÉÓÃÏàͬµÄ½»»»-Ïà¹ØÊÆ£¬ÔÚ³¬¹ý½ØÖ¹°ë¾¶ºóÓë¼Ûµç×Ó²¨º¯ÊýÐÎʽÏàͬ£¬ØÍÊÆµÄ±¾Õ÷ÖµµÈÓÚ¼Ûµç×ӵı¾Õ÷Öµ¡£Èç¹ûµç×Ó²¨º¯ÊýºÍØÍÊÆ²¨º¯ÊýÂú×ãÕý½»¹éÒ»£¬Á½ÕßÔÚ½ØÖ¹°ë¾¶ÒÔÍâµÄÆ¥ÅäÐÔ¾ö¶¨Á˹淶-±£ÊØÌõ¼þ×Ô¶¯³ÉÁ¢¡£Àë×ÓØÍÊÆµÄ½ØÖ¹°ë¾¶ÊÇʵ¼ÊÎïÀíÐ¾ÇøµÄ¶þµ½Èý±¶¡£½ØÖ¹°ë¾¶Ô½Ð¡£¬ØÍÊÆÔ½¡°Ó²¡±¶øÊÊÓÃÐÔ£¨transferability£©ºÃ¡£¼ÆË㾫¶ÈºÍЧÂʾö¶¨ÁËʵ¼ÊÖвÉÓõĽØÖ¹°ë¾¶µÄ´óС¡£

¹æ·¶-±£ÊØØÍÊÆÓÅ»¯

ÔÚ¹ÌÌ弯ËãÖÐÒÀ¾ÝÄÜÁ¿µÄ½ØÖ¹´æÔÚһϵÁÐÓÅ»¯ØÍÊÆµÄ·½·¨£¬Lin»ùÓÚRappeÔçÆÚ¹¤×÷Ìá³öÁËÏÂÁÐØÍÊÆ²úÉú·½·¨£ºÔÚ½ØÖ¹°ë¾¶£¨cutoff radius£©ÄÚ£¬ØÍÊÆ²¨º¯Êý¿ÉÒÔ±í´ïΪ£º

?PSl4`(qR)?`(R)j(r)??aijl(qir),lic?lcjc(qiRc)?l(Rc)i?1

j(qr)liÊÇÇòÐÎBesselº¯Êý£¬ÔÚr=0ºÍr=RcÖ®¼äÓУ¨i-1£©¸öÁãµã¡£Îª±£Ö¤ØÍÊÆµÄʵÓÃÐÔ£¬½ØÖ¹°ë¾¶Ô½´óÔ½

ºÃ¡£³¬¹ý½ØÖ¹Ê¸Á¿qc¶Ô¶¯ÄÜ×îС»¯¿ÉµÃµ½ÏµÊý?i¡£

?qc2PS,?2PS2PS?E(qi,q)???dr?l(r)??l(r)??dqq?l(q)kc00??

ÔÚµÚÒ»¸ö·½³ÌÖÐÈÃqcµÈÓÚq4¡£ÆäËûµÄÈý¸öÏÞÖÆÌõ¼þʹµÃØÍ²¨º¯ÊýÔÚ½øÐÐLagrangeÁ¬³Ë£¨Lagrange

multipliers£©Ê±±£³ÖÕý½»»¯£¨normalization£©£¬²¢ÇÒʹØÍ²¨º¯ÊýÔÚRc´¦µÄµÚÒ»¸ö¶þ½éƫ΢·ÖÊÇÁ¬ÐøµÄ¡£°ë¾¶Ïà¹ØKohn-Sham ·½³Ì·´×ª±ê×¼²½Öè²úÉúµÄÒ»¸ö¾ßÓÐÀíÏëÊÕÁ²ÐÔÖÊµÄÆ½»¬ØÍÊÆº¯Êý¡£LeeÌá³öÁ˽øÒ»²½¸Ä½øµÄ·½·¨£¬ÔÚCASTEPÊý¾Ý¿âÖйÌÌ广·¶±£ÊØØÍÊÆ¾ÍÊDzÉÓÃËûµÄ˼ÏëÉè¼ÆµÄ¡£ÕâÖÖͨÓõķ½·¨Ïû³ýÁËÔÚÌØ¶¨µÄ½ØÖ¹°ë¾¶´¦ØÍ²¨º¯ÊýµÄ¶þ½éƫ΢·Ö±ØÐëÊÇÁ¬ÐøµÄÌõ¼þ£¬ÒòΪËüÊÇ×Ô¶¯Âú×ãÕâ¸öÌõ¼þµÄ¡£ÕâÑù¶ÔÓÚÌØ¶¨½ØÖ¹°ë¾¶RcÔÊÐíÎÒÃÇͨ¹ýµ÷½ÚqcÌá¸ßØÍÊÆµÄ¾«¶ÈºÍ¼ÆËãЧÂÊ¡£

³¬ÈíØÍÊÆ£¨ULTRASOFT PSEDUPOTENTIAL£©

ΪÁËÄܹ»Ê¹Æ½Ã沨»ù×鼯ËãÖÐËù²ÉÓõĽØÖ¹ÄÜÁ¿¾¡¿ÉÄܵÄС£¬VanderbiltÌá³öÁ˳¬ÈíØÍÊÆ·½·¨¡£ÖÚËùÖÜÖª¹æ·¶-±£ÊØØÍÊÆÔÚÊÕÁ²ÓÅ»¯ÖдæÔÚ±¾ÉíȱÏÝ£¬ËùÒÔ¾ÍÉè¼ÆÁËÁíÒ»ÖÖ·½·¨¡£³¬ÈíØÍÊÆ»ù´¡ÊÇÔÚ´ó¶àÊýÇé¿öÏÂÖ»Óе±½ôÃܽáºÏÔ­×Ó¼Û¹ìµÀ¼ÓȨÐÔ·ÖÊý´ó²¿·ÖÔÚÐ¾ÇøÊ±£¬ÀûÓÃÆ½Ã沨»ù×鼯Ëã²ÅÒªÇó½Ï¸ßµÄ½ØÖ¹ÄÜÁ¿¡£ÔÚÕâÖÖÇé¿öÏ£¬¼õÉÙÆ½Ã沨»ù×éµÄΨһ·½·¨¾ÍÊǽâ³ý£¨violate£©¹æ·¶-±£ÊØØÍÊÆ³ÉÁ¢Ìõ¼þ£¬½«ÕâЩ¹ìµÀÖеĵç×Ó´ÓÐ¾ÇøÒÆÈ¥¡£Ð¾ÇøµÄØÍÊÆ¾Í¿ÉÒÔ¾¡¿ÉÄܵġ°Èí¡±£¬´Ó¶øÊ¹½ØÖ¹ÄÜÁ¿½µµÍ´ïµ½ÒªÇó¡£´Ó¼¼ÊõÉϽ²£¬Í¨¹ýÒýÈëÒ»¸ö¹ãÒåµÄÕý½»¹éÒ»»¯Ìõ¼þ¾Í¿ÉÒÔÍê³É¡£ÎªÁ˸²¸ÇÈ«²¿µç×ÓµçºÉ£¬ÔÚÐ¾Çø¶ÔÓɵç×Ó²¨º¯Êýģƽ·½²úÉúµÄµç×ÓÃܶȽøÐÐÊʶȷŴó£¨augmented£©¡£µç×ÓÃܶȻ®·Ö³ÉÁ½²¿·Ö£ºÀ©Õ¹ÔÚÕû¸ö¾§ÌåÖС°Èí¡±²¿·ÖºÍ¶¨ÓòÔÚÐ¾ÇøµÄ¡°Ó²¡±²¿·Ö¡£

5

CASTEP¼ÆËãÔ­Àí---------XBAPRS

¹ÌÌåÖг¬ÈíØÍÊÆ¹«Ê½

³¬ÈíØÍÊÆÖÐ×ÜÄÜÁ¿Óë²ÉÓÃÆäËûØÍÊÆÆ½Ãæ²¨·½·¨Ê±Ïàͬ£¬·Ç¶¨ÓòÊÆVNL±í´ïÈçÏ£º

(0)IV??Dnm?nNlnm,IͶӰËã·û¦ÂºÍϵÊýD

¶È¿ÉÒÔ±íʾΪ£º

£¨0£©

I?m

·Ö±ð±íÕ÷ØÍÊÆºÍÔ­×ÓÖÖÀàµÄ²î±ð£¬Ö¸Êý I¶ÔÓ¦ÓÚÒ»¸öÔ­×ÓλÖà ¡£×ÜÄÜÁ¿Óõç×ÓÃÜ

?2I(r)??In(r)????i(r)??Qnmini?nm,I??I???mi??

¦µÊDz¨º¯Êý£¬ Q(r) ÊÇÑϸñλÓÚÐ¾ÇøµÄ¸½¼Óº¯Êý(Augment function) ¡£³¬ÈíØÍÊÆÍêÈ«Óɶ¨Óò²¿·Ö£¬ ion(0)

Vloc(r) ºÍϵÊýD, Q and ?È·¶¨£¬ÕâЩ±äÁ¿¼ÆËã·½·¨ÔÚÏÂÎÄÖн«×ö½éÉÜ¡£ ÒýÈëÒ»¸ö¹ãÒåÕý½»¹éÒ»Ìõ¼þÀ´½â³ý¹æ·¶-±£ÊØØÍÊÆµÄÏÞÖÆÌõ¼þ£º

?iS?j??ij SÊǹþÃܶÙÖØµþËã·û£¨Hermitian overlap operator£©

I?S?1?qnm?nnm,II?m

ϵÊýqÊÇͨ¹ý¶ÔQ£¨r£©»ý·ÖµÃµ½£¬³¬ÈíØÍÊÆµÄKohn-Sham·½³Ì¿ÉÒÔдΪ£º

H?iH´ú±íÁ˶¯ÄܺͶ¨ÓòÊÆÄÜÖ®ºÍ£¬ÈçÏÂËùʾ£º

??S?ii

6

CASTEP¼ÆËãÔ­Àí---------XBAPRS

I?IH?T?V??Dnmneffnm,Iion

I?m

ÔÚVeffÖаüº¬Àë×Ó¶¨ÓòÊÆVloc(r)£¬HartreeÊÆºÍ½»»»-Ïà¹ØÊÆµÈÏͨ¹ý¶¨ÒåһЩвÎÊý¾Í¿ÉÒÔ½«Òò¸½¼Ó

£¨augmented£©µç×ÓÃܶȶø²úÉúËùÓÐÏîÈ«²¿°üº¬ÔÚØÍÊÆµÄ·Ç¶¨Óò²¿·Ö¡£

DInm?D??drVeff(r)Q(r)nmnm(0)I

Óë¹æ·¶-±£ÊØØÍÊÆ¶Ô±È£¬²»Í¬Ö®´¦ÔÚÓÚÔÚ³¬ÈíØÍÊÆÖдæÔÚÖØµþËã·ûS£¬²¨º¯ÊýÓëDÓйضøÇÒÊÂʵÉÏͶӰËã

·ûº¯Êý¦Â£¨projector function£©ÊýÁ¿Òª±È¹æ·¶-±£ÊØØÍÊÆÖдóÁ½±¶¶à¡£Ó븽¼Ó£¨augmented£©µçºÉÏà¹ØµÄһϵÁмÆËã¿ÉÒÔÔÚʵ¿Õ¼ä(real space)ÖнøÐУ¬ÕâÓ뺯ÊýÖж¨ÓòÊÆµÄÐÔÖÊÓйء£¶àÓàµÄ²½Öè²»»á¶Ô¼ÆËãЧÂʲúÉú½Ï´óµÄÓ°Ïì¡£ÔÚLaasonenÎÄÏ×ÖÐÌṩÁ˳¬ÈíØÍÊÆ¼ÆËãµÄÏêϸ·½·¨ÒÔ¼°×ÜÄÜÁ¿Î¢·Ö±í´ïʽ¡£ ØÍÊÆÉú³É£ºÓë¹æ·¶-±£ÊØØÍÊÆÇé¿öÒ»Ñù£¬ÔÚ×ÔÓÉÔ­×ÓÉ϶ÔËùÓеĵç×Ó½øÐмÆË㣬µÃµ½ÆÁ±ÎÔ­×ÓÊÆVAE(r)£¨screened atomic potential£©¡£Ã¿¸ö½Ç¶¯Á¿Ñ¡ÔñһϵÁеIJο¼ÄÜÁ¿?l£¬Ò»°ãÁ½¸öÄÜÁ¿²Î¿¼µã¾Í×ã¹»ÁË¡£ÕâЩÄÜÁ¿²Î¿¼·¶Î§±ØÐë°üº¬Á¼ºÃÉ¢ÉäÐÔÖÊ£¬ÔÚÿ¸ö²Î¿¼ÄÜÁ¿´¦Çó½âÓë°ë¾¶Ïà¹ØµÄKohn-Sham·½³Ì£¬µÃµ½¹æÔò³õʼµã¡£Ñ¡Ôñ½ØÖ¹°ë¾¶£¬¶ÔÉÏÃæ²úÉúµÄÿ¸öÈ«µç×Ó²¨º¯Êý¹¹ÖþÒ»¸öØÍÊÆ?£¬Î¨Ò»µÄÏÞÖÆÌõ¼þÊÇËü±ØÐëÔÚRcl´¦Óë?ƽ»¬Ïཻ¡£¶¨ÒåÒ»¸ö±ÈËùÓÐÐ¾Çø°ë¾¶ÉÔ´óµÄ¸¨Öú°ë¾¶R¡£×îºó¾ÍÐγÉÁ˶¨Óò¹ìµÀ£¨³¬¹ýRʱ¾ÍÏûʧ£©£º

?n?(??T?V)?nnlocB?

ÒÔ¼°ËüÃǾØÕóÄÚ»ý£¨inner products£©£ºnmion

?n?m

(0)

ÕâÑù¾Í¿ÉÒÔ¶¨ÒåÓÃÓÚ¹ÌÌ弯ËãµÄ±äÁ¿ (Vloc(r), D, Q and ?):

Q(r)??(r)?(r)??(r)?(r);q??drQnm(r)nmnmnmnm??

7

CASTEP¼ÆËãÔ­Àí---------XBAPRS

?n??(B?1)nm?mm

ion

(0)

²ÉÓÃÈ¥ÆÁ±Î£¨descreening procedure£©·½·¨¼ÆËãVloc(r), DϵÊý:

Vlocion(r)?V(r)?V(r)?V(r)locHxc

(0)Dnm?Bnm??mqnm??drVloc(r)n(r)ÔÚÈ¥ÆÁ±Î·½·¨ÖпÉÒÔÒýÈë·ÇÏßÐÔºËУÕý·½·¨£¨The nonlinear core correction (NLCC)£©£¬ÕâÓë¹æ·¶-±£ÊØØÍÊÆÖÐËù²ÉÓõķ½·¨ÍêȫһÖ¡£ÔÚÒÔÏÂÇé¿öϳ¬ÈíØÍÊÆÊǺÜÊÊÓõģº

ØÍ±¾Õ÷ÖµÓëËùÓеç×Ó±¾Õ÷ÖµÏàͬ£¬ÔÚо°ë¾¶½ØÖ¹ÇøÒÔÍâØÍ¹ìµÀ²¨º¯ÊýÓë¼Ûµç×Ó²¨º¯ÊýÆ¥ÅäÒ»Ö£»¶ÔÓÚÿ¸ö²Î¿¼ÄÜÁ¿É¢ÉäÐÔÖʶ¼ÊÇÕýÈ·µÄ£¬ÕâÑùͨ¹ýÔö¼Ó²Î¿¼ÄÜÁ¿µãÊýÄ¿¾Í¿ÉÒÔϵͳµÄÌá¸ßØÍÊÆµÄÊÊÓÃÐÔ£»Ôڲο¼µç×ÓÅŲ¿Çé¿öÏ£¬ØÍÊÆ¼Ûµç×ÓÃܶÈÓëÈ«¼Ûµç×ÓÃܶÈÏàͬ¡£

¹ØÓÚ·ÇÏßÐÔºËУÕý

LouieµÈÈ˵ÚÒ»´ÎÌá³öÁË·ÇÏßÐÔоУÕý£¬Ê¹µÃØÍÊÆ¶Ô´ÅϵͳµÄÃèÊö¸ü׼ȷ¡£È»¶ø£¬¶ÔÓÚ·Ç×ÔÐý¼«»¯ÌåϵÖÐ×¼Ð¾Çøµç×Ó£¬NLCCÒ²¾ßÓÐͬÑùµÄ×÷Óá£DFT×ÜÄÜÁ¿×¼È·±í´ïÐèÒªNLCC£¬ÈçÏ£º

Etot?T????Eion????Eee????Exc???

ÔÚØÍÊÆµÄ¼ÆËãʽÖУ¬µç×ÓÃܶȷֱðÀ´×ÔÓÚÐ¾Çøµç×Ӻͼ۵ç×Ó¡£½«Ð¾ÇøÄÜÁ¿¼ÙÉèΪһ³£Êý²¢Çв»¼ÆÈë¼ÆËã¡£ÓÃÒ»¸ö¼Ûµç×ÓÃܶȺÍÓÉØÍÊÆ¼ÆËãµÃµ½µÄÀë×Ó¶¨ÓòÊÆEionÀ´´úÌæ×ܵç×ÓÃܶȣ¬ÕâÑùÐ¾Çøµç×ÓÓë¼Ûµç×ÓÖ®¼äËùÓеÄÏ໥×÷ÓÃÈ«²¿×ªÒƵ½ØÍÊÆÉÏ¡£ÓÉ´Ë¿ÉÒÔÍÆ¶Ïµç×ÓÃܶÈÏßÐÔ»¯Ö»ÊǶԶ¯Äܺͼòµ¥·ÇÏßÐÔ½»»»-Ïà¹ØÄܵÄÒ»¸ö½üËÆ£¬ºÜÃ÷ÏÔµ±Ð¾Çøµç×Ӻͼ۵ç×ÓÔÚ¿Õ¼äºÜºÃ·ÖÀëʱÊÇÒ»¸öÁ¼ºÃµÄ½üËÆ¡£µ«Èç¹ûÁ½¸öÇøÓòµç×ÓÃܶȵĵþ¼ÓÃÜÇÐʱ£¬¼ÆËãÌåϵ±¾Éí¾Í»á²úÉú´íÎ󣬽øÒ»²½¼õÈõØÍÊÆÊµÓÃÐÔ¡£½â¾öNLCCÎÊÌâµÄ·½·¨¾ÍÊǵ÷½ÚØÍÊÆÉú³É·½·¨ÒÔ¼°ÔÚ¹ÌÌåÖмÆËã·½·¨¡£ÔÚ²úÉúØÍÊÆÊ±Ã¿¸ö½Ç¶¯Á¿Í¨µÀ¶ÔÓ¦Ò»¸öÆÁ±ÎÊÆ£¬²¢ÇÒÂú×ãÒ»¶¨µÄÌõ¼þ£¬±ÈÈç¹æ·¶-±£ÊØ£¬ØÍ²¨º¯Êý±¾Õ÷ÖµÓëÈ«µç×Ó²¨º¯Êý±¾Õ÷ÖµÏàͬµÈ¡£ÕâЩÆÁ±ÎÊÆ£¨screened potentials£©¶ÔÓ¦µÄÔ­×ÓØÍ²¨º¯Êý£¨atomic pseudowavefunctions£©½ö±íʾ¼Ûµç×Ó¡£´ÓÕâЩ²¨º¯Êý¿ÉÒԵõ½¼Û²ãØÍµç×ÓÃܶȣ¨pseudo charge density£©£¬Í¨¹ý¶ÔÊÆµÄÆÁ±ÎµÃµ½¡°¹âͺ¡±Àë×ÓÊÆ£¨bare£©£º

lVion(r)?Vl(r)?Vee[??(r)]?Vxc[??(r)]

ÓÉÓÚ½»»»-Ïà¹ØÊÆ·ºº¯Êǵç×ÓÃܶȵķÇÏßÐÔº¯Êý£¬¶Ô×ÔÐý¼«»¯Ìåϵ²ÉÓÃÕâÖÖ·½·¨²úÉúµÄÀë×ÓÊÆÓë¼Ûµç×ÓÅÅÁÐÓйء£LouieµÈÌá³öÁ˽«ÉÏÃæ·½³ÌÌæ»»ÎªÈçϱí´ï£º

8

CASTEP¼ÆËãÔ­Àí---------XBAPRS

V(r)?V(r)?Vee[??(r)]?Vxc[??(r)??c(r)]

ÔÚÆÁ±ÎÔ­×ÓÊÆÖмõÈ¥×ܽ»»»-Ïà¹ØÊÆ¡£´ËÍ⣬ÔÚ¼ÆËã½»»»-Ïà¹ØÊÆÊ±Ð¾ÇøµçºÉ±ØÐë¼Óµ½¼Ûµç×ÓÖÐÈ¥£¬Õâ¸ö¶îÍâÔ­×Ó״̬ÐÅÏ¢´«µÝ¸øCASTEP£¬ÔÚËùÓмÆËãÖÐÐ¾ÇøµçºÉÈÏΪ£¨deemed£©ÊÇÏàͬµÄ£¬ÕâÖÖ×ö·¨µÄÒ»¸öȱµãÊÇÔÚÀûÓÃØÍÊÆ¼ÆËãÊ±Ð¾ÇøµçºÉºÜÄÑ׼ȷµÄÓÃFourierÍø¸ñ±íʾ¡£¶øÇÒͨ³£Ð¾Çøµç×ÓÃܶȱȼ۵ç×ÓÃܶȴó£¬ÕâºÜÈÝÒ×½«Óë¼Ûµç×ÓÃܶÈÓйصÄÓ°ÏìÑڸǵô¡£ÒÔϲ¿·Ö½«¶Ô²¿·ÖÐ¾ÇøÐ£Õý·½³Ì½¨Á¢×ö½éÉÜ£¬¸Ã·½·¨³ä·ÖµÄÈÏʶµ½¼Ûµç×ÓÓëоµç×ÓÃܶÈÖØµþµÄÇøÓò²ÅÊÇÎÒÃǸÐÐËȤµÄ¡£¿¿½üÔ­×Ӻ˵Äоµç×ÓÃܶȲ»»á²úÉúÎïÀí½á¹û£¬ËäÈ»ÓÐÈçÉÏËùÊöµÄһЩÎÊÌâ¡£²¿·ÖNLCC²ÉÓÃÒ»¸öÔÚÌØ¶¨°ë¾¶ÒÔÍâÓë?cÒ»Öµĺ¯ÊýÌæ´úȫоµç×ÓÃܶȣ¬ÔÚÔ­×ÓºËÖÜΧÕâ¸öº¯ÊýÆð·üÊÇÆ½»¬µÄ¡£ÔÚCASTEPÖжÔÒ»Ð©ÌØ¶¨ÔªËØÔÚØÍÊÆÖвÉÓõIJ¿·ÖÐ¾ÇøÐ£ÕýʹÓÃÁËÊýÖµ»¯µÄÐ¾Çøµç×ÓÃܶȡ£Ôڹ淶±£ÊØØÍÊÆÖÐËäÈ»ÓÐÏà¹ØµÄÄÚÈÝ£¬µ«ÔÚ¼ÆËãÖв¢Ã»ÓвÉÓÃÕâ¸ö·½·¨¡£

lionlA Introduction to DFT

µÚÒ»ÐÔÔ­Àí£¨The first principle£©¼ÆËãÒ²³ÆÎª´ÓÍ·ËãÆð£¨ab-initial calculation£©£¬ÓÉÓÚ¹ÌÌåµÄÐí¶à»ù±¾µÄÎïÀíÐÔÖÊÊÇÓÉÆä΢¹ÛµÄµç×ӽṹ¾ö¶¨µÄ£¬Òò´Ëͨ¹ýÇó½â¶àÁ£×ÓϵͳµÄSchodinger·½³Ì£¬À´»ñÈ¡¹ÌÌåÈ«²¿µÄ΢¹ÛÐÅÏ¢´Ó¶øÔ¤²âºê¹ÛµÄÐÔÖÊ¡£ÀûÓÃÕâ¸ö˼Ï뽨Á¢µÄÄÜÁ¿µÄ¹þÃܶÙÁ¿·ÇÏà¶ÔÂÛÐÎʽ¿ÉÒÔ±íʾÈçÏ£º

?2?212?2m??i2?(r,r,r,.......,rrr.........,r)?2???(r,r,r,.......,rrr.........,r)?ke1e2e3ei,n1,n2,njei,n1,n2,njeijmnjjke1e2e3(?????)?k(re1,re2,re3,.......,rei,rn1,rn2,.........,rnj)i1,i2rei?reji,jrei?rnjj1,j2rn?rnj1?j2j1j2i1?i2?Ek?k(re1,re2,re3,.......,rei,rn1,rn2,.........,rnj)¿¼Âǵ½Ô­×ÓºËÓëºËÍâµç×ÓÖÊÁ¿²î±ðÒÔ¼°µç×Ó³Ûԥʱ¼ä±ÈÔ­×Ӻ˳Ûԥʱ¼äҪСÈý¸öÊýÁ¿¼¶£¬Òò´ËÀûÓÃ

Born-Oppenheimer½üËÆ½«Ô­×ÓºËÔ˶¯ºÍµç×ÓµÄÔ˶¯·ÖÀ룬´Ó¶ø½«Ìåϵ²¨º¯Êý»®·ÖΪµç×Ó²¨º¯ÊýºÍÔ­×Ӻ˲¨º¯ÊýÁ½¸ö²¿·Ö£¬·Ö±ðÓÃ?ºÍ?±íʾ£º

e2zje2zj1zj2e2?(r,r,r,.......,rrr.........,r)??(r,r,r,.......,r)?(rr.........,r)ke1e2e3ei,n1,n2,nje1e2e3ein1,n2,njÄÜÁ¿µÄ¹þÃܶÙÁ¿¿ÉÒÔ·Ö½âΪÈçϵÄÁ½¸ö·½³Ì£º

9

CASTEP¼ÆËãÔ­Àí---------XBAPRS

22e?2zeej2(?2m??i????)?(r,r,r,.......,r?E?(r,r,r,.......,re1e2e3ei)kee1e2e3ei)eii1,i2rei?reji,jrei?rnj i1?i22n?2zje2zj1zj2e21(?2??????)?(rr.........,r)?E?(rr.........,r)jn1,n2,njknn1,n2,njmjnji,jrei?rnjj1,j2r?rnnj1?j2j1j2µÚÒ»ÐÔÔ­ÀíÑϸñÇó½â½öÔÚÇâ·Ö×ÓÖÐʵÏÖÁË£¬¶ÔÓÚ¶àÁ£×ÓÌåϵµÄ¼ÆË㼸ºõÊDz»¿ÉÄܵġ£Ä¿Ç°¾ù²ÉÓò»Í¬µÄ

½üËÆ·½·¨À´ÊµÏÖ¼ÆË㣬Ö÷Òª·½·¨ÓÐHartree-Fock½üËÆºÍDFT½üËÆ¡£ÔÚHartree-Fock½üËÆÖÐÌåϵµÄ¹þÃܶÙÁ¿±íʾÈçÏ£º

ETotal?HFi??)???HF???(Jij?Kijiij?iJ

??ΪµÚi¸öµç×ÓµÄHartree-FockµÄ¹ìµÀÄÜ£¬ijÊÇ¿âÂØ»ý·Ö£¬±íʾµç×Ó¾²µç»¥³âÄÜ£¬KijΪ½»»»»ý·Ö¡£

½»»»»ý·ÖËù´ú±íµÄ½»»»ÄÜÖ¸µç×ÓÓÉÓÚ×ÔÐýƽÐжøÒýÆðµÄµç×Ó¹ìµÀ¿âÂØÄÜÁ¿¼õÉٵIJ¿·Ö¡£

Ãܶȷºº¯ÀíÂÛ(Density Functional Theory)½¨Á¢Á˽«¶àµç×ÓÌåϵ»¯Îªµ¥µç×Ó·½³ÌµÄÀíÂÛ»ù´¡£¬²¢ÇÒ¸ø³öÁËÓÐÐ§ÊÆ¼ÆËã·½·¨£¬ÊÇĿǰÑо¿¶àÁ£×ÓÌåϵÐÔÖʵÄÒ»ÖÖÆÕ±éʹÓõÄÖØÒª·½·¨¡£

¸ÃÀíÂÛÈÏΪ¶ÔÓÚ´¦ÓÚÍâÊÆ³¡V£¨r£©ÖÐÏ໥×÷ÓõĶàµç×Óϵͳ£¬µç×ÓÃܶȷֲ¼º¯Êý¦Ñ(r)ÊǾö¶¨¸Ãϵͳ»ù̬ÎïÀíÐÔÖʵĻù±¾±äÁ¿¡£Ãܶȷºº¯ÀíÂÛÖÐÌåϵµÄÄÜÁ¿·ºº¯±íʾÈçÏ£º

E(?)?T(?)?U(?)?E(?)txc

T(?)£ºKinetic energy; U(?):classical electrostatic energy; Exc(?):exchange and correlation energy

ÓÉÉϱí´ïʽ¿É¼ûÌåϵÄÜÁ¿Êǵç×ÓÃܶȵķºº¯£¬Òò´Ë¿ÉÒÔ½øÒ»²½½«ÉÏʽ±í´ïΪ£º

2?(r)?(r?)?eE[?(r)]??V(r)?(r)dr?T[?(r)]???drdr?E[?(r)]txc2r?r?

ÔÚÉÏʽÖеÚÒ»ÏîΪµç×ÓÔÚÍⳡÖеÄÊÆÄÜ£¬µÚ¶þÏîΪµç×ӵ͝ÄÜ£¬µÚÈýÏîΪµç×ÓÏ໥֮¼äµÄ¿âÂØÄÜ£¬µÚËÄÏîΪ½»»»Ïà¹ØÄÜ£¬×îºóÒ»ÏîÐÎʽÊÇδ֪µÄ¡£ ϵͳµÄµç×ÓÃܶȷֲ¼¿ÉÒÔ±í´ïÈçÏ£º

2??(r)??i(r)i

10

CASTEP¼ÆËãÔ­Àí---------XBAPRS

ÀûÓÃÉÏʽ¿ÉÒÔ½«¶¯ÄÜÏî±íʾΪ£º

T[?(r)]?n??2?i??i2i

U(?)±í´ïΪ£º

nNN1?z1U[?(r)]????r(r)?i(r)?2???i(r1)?j(r2)?i(r1)?j(r2)???Ra?rr1?r2iaija??aNNza11????(r1)??(r1)?(r2)???Ra?r12r1?r2a??aaVe?r????(r)VN??(r)?VNN2E(?)zaz?Ra?R?zaz?Ra?R?

xcÐÎʽȷ¶¨ÓÐÁ½ÖÖ·½·¨£º¾ÖÓòÃܶȽüËÆ£¨LDA,Local Density Approximation£©ºÍ¹ãÒåÌݶȽüËÆ£¨GGA,

General Gradient Approximation£©¡£ÔÚ¾ÖÓòÃܶȽüËÆ£¨LDA£©ÖвÉÓÃÁ˾ùÔȵç×ÓÆøµÄ·Ö²¼º¯ÊýÍÆµ¹³öÁ˷ǾùÔȵç×ÓÆøµÄ½»»»-Ïà¹ØÄÜ·ºº¯£¬´Ó¶øµÃµ½Exc(?)µÄ¾ßÌåÐÎʽ¡£´Ó½üÆÚ¼ÆËã½á¹ûÏà¹Ø±¨µÀÀ´¿´²ÉÓþÖÓòÃܶȽüËÆ£¨LDA£©¼ÆËãÔÚ¾øÔµÌåÖлá²úÉú½Ï´óµÄÎó²î£¬¶øÇÒ¶Ô´øÏ¶¿íµÄ°ëµ¼ÌåµÈµÃµ½²»ÕýÈ·µÄ½á¹û¡£²É

ÓþÖÓòÃܶȽüËÆ£¨LDA£©Ö÷ÒªµÄȱÏÝÏÖ¹éÄÉÈçÏ£º

1£® ¶Ô¹âѧԾǨ´øÏ¶Ô¤²âºÜ²î£¨Ò»°ãÊǹýµÍ¹À¼Æ´øÏ¶¿í¶È£©¡£ÕâËäÈ»¶Ô»ù̬ÐÔÖÊÈçµçºÉÃܶȣ¬×ÜÄÜÁ¿ÒÔ¼°

Á¦Ó°Ïì²»´ó£¬µ«ÔÚµ¼´ø×´Ì¬¼ÆËãÖÐÈ´ÊǸö´óÎÊÌ⣬Èç¹ØÓÚ¹âѧÐÔÖÊ£¬ÔËÊäÐÔÖʵȵļÆËã¡£ÔÚÖîÈç¹â·ü×°ÖõÈÁìÓòµÄÑо¿ÖУ¬´øÏ¶¾ÍÊǸöºÜÖØÒªµÄÎÊÌâ¡£²ÉÓá°¼ôµ¶¡±(Scissors)¹¤¾ßÔÚ¹ÌÌå´øÏ¶¼ÆËãÖкÜÓÐÓ㬵«¶ÔÎÒÃÇδ»ñµÃʵÑé½á¹ûµÄÎïÖÊ£¬ÊDz»ÄܲÉÓÃÕâ¸ö·½·¨µÄ¡£ 2£® ¶ÔÀàËÆÓÚ¶þÑõ»¯¹èÕâÑùµÄµç×ÓÆø·Ö²¼¼«²»¾ùÔÈÌåϵ£¬»ù±¾¼ÙÉèÖйØÓÚµç×ÓÃܶȷֲ¼ÔÚ¿Õ¼äÊÇ»ºÂý±ä»¯

µÄÌõ¼þÊDz»Âú×ãµÄ£¬ÕâÑùµÄÌåϵ²ÉÓÃLDA´¦Àí¾Í´æÔÚÄÑÌâ¡£

3£® LDA¼òµ¥µÄÈÏΪ¼ÆËãÌåϵÊÇ˳´ÅÐÔ(Paramagnetic)µÄ£¬¶ÔÓÚ°üº¬Î´Åä¶Ô(Unpaired)×ÔÐýÌåϵ²ÉÓþÖÓò×Ô

ÐýÃܶȽüËÆ£¨LSDA£©£¨¶Ô×ÔÐýÏòÉÏ(spin up)ºÍÏòÏÂ(spin down)µÄµç×Ó·Ö±ð²ÉÓÃÃܶȷºº¯¼ÆË㣩ÊǺÜÓÐÓõ쬱ÈÈç·ÑÃ×Äܼ¶(Fermi level)´¦°ëÌî³äµÄϵͳ¡£

4£® ×îºóÒ»¸öºÜÉÙ¹Ø×¢µÄÁìÓò¾ÍÊDz£Á§Ìմɹ¤Òµ£¬LDA¶ÔÈõµÄ½áºÏ¼ü£¨Èçż¼«ÕÇÂ䣩ºÜÄÑÃèÊö£¬Çâ¼ü

(Hydrogen bond)ÔÚLDAÖÐÒ²ÎÞ·¨»ñµÃ׼ȷµÄ¼ÆËã½á¹û¡£

GGA½üËÆÔò¸Ä½øÁËL(S)DA,½«Ïà¹Ø½»»»ÄÜÈ·¶¨Îªµç×ÓÃܶȼ«ÆäÌݶȵĺ¯Êý£¬ÔÚGGAѧÅÉÖÐÒÔPerdewµÈÈËÈÏΪ½»»»Ïà¹ØÄܵķºº¯ÐÎʽӦ¸ÃÒÔÒ»¶¨µÄÎïÀí¹æÂÉΪ»ù´¡£¬¹¹ÔìÁËÖøÃûµÄPBE·ºº¯¡£

½«µç×ÓÃܶȷֲ¼º¯Êý´øÈëÌåϵÄÜÁ¿µç×ÓÃܶȷºº¯ÖУ¬¶Ô·ºº¯±ä·ÖÇó¼«Ð¡Öµ£¬¿ÉÒԵõ½Kohn-Sham·½³Ì£º

11

CASTEP¼ÆËãÔ­Àí---------XBAPRS

??F?(r)?E?(r)iii?F???

?

2?V[?(r)]KS

???Exc?(r)V[?(r)]?V(r)??dri??KS????(r)ir?r

½»»»-Ïà¹ØÄÜ¿ÉÒÔ°´ÕÕÏÂʽ¼ÆË㣺

?E?xc[?]???(r)EE[?(r)]xc[?(r)]dr

:number of particles; xc:exchange-correlation energy per particles in an uniform electron gas ;

?(r)?Exc

:distribution function of electron density.

???(r)³ÆÎª½»»»-Ïà¹ØÊÆºÍ£¬±íʾΪ£º

?xc[?(r)]????(r)?Exc

ÔÚCastep¼ÆËãÖвÉÓÃÁËÖÜÆÚÐԱ߽çÌõ¼þ£¬µ¥µç×ӵĹìµÀ²¨º¯ÊýÂú×ãBloch¶¨Àí£¬²ÉÓÃÆ½Ã沨չ¿ªÊ½ÓУº

?i(r)?eiK?R?i(r)

ÖÜÆÚÐԱ߽çÌõ¼þϵIJ¨º¯ÊýÀ©Õ¹ÎªÒ»ÏµÁзÖÀëµÄÆ½Ãæ²¨²¨Ê¸£¬ÕâЩ²¨Ê¸Óë¾§ÌåµÄµ¹Ò×µãÕóʸÁ¿ÏàÁªÏµ¡£

?i(r)??Ci,Ge2.2 ¾§Ìå¹âѧÐÔÖʵļÆËã»ùÓÚÒÔÏÂÔ­Àí£º

12

iG?R

CASTEP¼ÆËãÔ­Àí---------XBAPRS

µç´Å²¨ÔÚÕæ¿ÕÒÔ¼°Ä³ÖÖ²ÄÁϽéÖÊÖд«²¥Ê±²î±ð¿ÉÒÔÓÃÒ»¸ö¸´ÊýʽµÄÕÛÉäÖ¸ÊýÀ´±íʾ£º

N?n?ik2k???c..............221?NR?1?N

ÔÚÕæ¿ÕÖÐNΪʵÊý£¬¶øÇÒÆä´óСΪ1£»ÔÚÆäËû½éÖÊÖÐʱÈô²ÄÁ϶ÔÓÚ¹âÊÇ͸Ã÷µÄÔòÊÇÒ»¸ö´¿ÊµÊý£¬Ð鲿¶ÔÓ¦²ÄÁϵÄÎüÊÕϵÊý£¨Adsorption Coefficient£©¡£ËüÃÇÖ®¼äµÄ¹ØÏµ·½³Ì2Ëùʾ£º

ÎüÊÕϵÊý±íʾµÄÊǵç´Å²¨Í¨¹ýµ¥Î»ºñ¶ÈµÄ²ÄÁÏʱÄÜÁ¿µÄË¥¼õ·ÖÊý£¬Í¨³£¿ÉÒÔÓòÄÁϽ¹¶úÈȵIJúÉúÀ´ºâÁ¿¡£ ·´ÉäϵÊý£¨Reflection Coefficient£©¿ÉÒÔ¼òµ¥Í¨¹ý½«´¹Ö±¹âÊøÕÕÉä²ÄÁϵıíÃæÒýÆð

(n?1)2?k2?......................322(n?1)?k

ÔÚ¼ÆËã¹âѧÐÔÖÊʱһ°ãÏȼÆËãÐ鲿µÄ½éµç³£Êý£¬ÆäËûµÄÐÔÖÊÓë½éµç³£ÊýÖ®¼ä½¨Á¢¹ØÏµ¡£Ð鲿½éµç³£Êý¼Æ

ËãʽÓÉÏ·½³ÌÈ·¶¨£º

??n?k??N......................512ÕâÑùÕÛÉäÖ¸ÊýµÄʵ²¿ºÍÐ鲿ÒÔ¼°½éµç³£ÊýÖ®¼äµÄ¹ØÏµ¿ÉÒÔдΪ£º

222

?1?n2?k?22?2nk...............6

¹âµ¼ÂÊ£¨Optical conductivity£©Ò²ÊÇÒ»¸öÆÕ±éÓÃÀ´ÃèÊö²ÄÁϹâѧÐÔÖʵÄÎïÀíÁ¿¡£¹âµ¼Âʵıí´ïʽΪ·½³Ì7£º

???1?i?.....................72

Õâ¸ö²ÎÊýÓÃÀ´ÃèÊö½ðÊôµÄ¹âѧÐÔÖÊ£¬µ«ÔÚCASTEPÖн«¼ÆË㷶ΧÀ©´óµ½Á˾øÔµÌåºÍ°ëµ¼Ìå¡£¼ÆËã¹ý³ÌµÄÖ÷ÒªµÄÇø±ðÔÚÓÚǰÕߵĹâѧÆ×ÖÐIR²¿·ÖÓëÄÚ²¿ÄÜ´øÖ®¼äµÄת±äÃÜÇÐÏà¹Ø£¬¶øÕßÔòÔÚ¼ÆËãÄÚʱ²¢Ã»ÓÐÍêÈ«¿¼Âǵ½ÕâЩÒòËØ¡£

´ÓÐ鲿½éµç³£Êý¿ÉÒÔ½øÒ»²½µÃµ½²ÄÁϵç×ÓµÄÄÜÁ¿Ëðʧº¯Êý(Energy Loss Function)£¬ËüÃèÊöÁ˵ç×Óͨ¹ý¾ùÔȵĵç½éÖÊʱÄÜÁ¿µÄËðʧÇé¿ö£¬¼ÆËãʽÈçÏÂËùʾ£º

?1Im(?(?)).....................8

ÔÚʵÑéÖÐÎÒÃÇ¿ÉÒԲⶨµÄ¹âѧÐÔÖʲÎÊýÓÐÎüÊÕϵÊý?(?)ºÍ·´ÉäϵÊýR(?)¡£´ÓÀíÂÛÉ϶øÑÔ£¬µÃµ½ÕâЩ

13

CASTEP¼ÆËãÔ­Àí---------XBAPRS

²ÎÊýÒÔºó¿ÉÒÔ½«·½³Ì2¡¢3¡¢4±íʾΪ¸´ÊýµÄÐÎʽ֮ºóµÃµ½±í´ïʽ1ÖеÄʵÊý²¿ºÍÐéÊý²¿¡£µ«ÔÚʵ¼ÊÇé¿öÏÂÓÉÓÚÈëÉä¹âÔ´µÄ¸´ÔÓÐÔ£¬¶øÇÒ¾§Ìå½á¹¹Öм«»¯Ð§Ó¦Ê¹µÃ²ÄÁϽéµç³£Êý²¢·ÇÊǸ÷ÏòͬÐԵġ£´ËÍâ²ÄÁϱíÃæ¼¸ºÎ½á¹¹Ò²²»ÊÇÀíÏëµÄƽ»¬±íÃæ¡£ÕâЩÒòËØ¾ÍÏÞÖÆÁË¶ÔÆä¹âѧ²ÎÊýµÄÔ¤²â¡£ÔÚCASTEPÖÐÌṩµÄ¹âѧÐÔÖʵļÆËãÖ§³ÖÌåϵ¼«»¯£¬µ«×´Ì¬Ö»ÄÜÔÚͬÖÖ×ÔÐý¼äÏ໥ת»¯¡£

¾§ÌåÖÐÉù×Ӻ͵ç×ÓÖ®¼äµÄÏ໥×÷ÓÿÉÒÔÓõç×Ó»ù̬²¨º¯ÊýÖаüº¬µÄº¬Ê±Î¢ÈÅÏîÀ´±íʾ£¬Éù×ӵ糡ÈŶ¯ÒýÆðÁ˵ç×Óº¯ÊýÕ¼¾Ý̬ºÍδռ¾Ý̬¼äµÄת±ä£¨´Å³¡ÒýÆðµÄЧӦҪÈõÒ»¸öÒòÊýV/C£©£¬ÕâЩ¼¤·¢Ì¬£¨¼¤×Ó£©¾Û¼¯Ì¬³ÆÎªµÈÀ벨×Ó¡£µ¥¶ÀµÄ̬¼¤·¢³ÆÎªµ¥Á£×Ó¼¤×Ó£¬ÕâЩ¼¤×Ó¶Ô¹âÆ×²úÉúµÄ½á¹ûÊǵ¼´øºÍ¼Û´øµÄ״̬ÃܶÈÖ®¼äµÄÁ¬½Ó¿ÉÒÔͨ¹ýÑ¡ÔñºÏÊʵļÓȨÐÔ¾ØÕóÔªËØÀ´ÊµÏÖ¡£ÔÚCASTEPÐ鲿½éµç³£ÊýµÄ¼ÆËã°´ÕÕ·½³Ì9½øÐУº

22?2e?cu,r???(Ec?E??E).....................9??(q?O?,??)????kkkk20k,?,cu

uʸÁ¿¶¨Òå¹âÊøµç³¡µÄ¼«»¯ÐÔÖÊ¡£Õâ¸ö±í´ïÀàËÆÓÚº¬Ê±Î¢ÈŵÄFermi-Golden¶¨Àí£¬?2(?)¿É¿´×÷ÕæÊµ

Õ¼¾Ý̬Óëδռ¾Ý̬֮¼äת»»µÄϸ½Ú¡£½éµç³£Êý¾ÍÃèÊöÁËÒ»ÖÖÒò¹ûЧӦ£¬ËüµÄʵÊý²¿ºÍÐéÊý²¿Ö®¼äÓÉKramers-Kronig±ä»»ÏàÁªÏµ¡£ÀûÓÃÕâ¸ö±ä»»¾Í¿ÉÒԵõ½½éµç³£ÊýµÄʵÊý²¿?1(?)¡£

ÓÃÓÚÃèÊöµç×Ó̬ת±äµÄλÖÃËã·û¾ØÕóÔªËØÍ¨³£Óö¯Á¿Ëã·û¾ØÕóÔªËØÀ´±íʾ£¬ÕâÑù¿ÉÒÔÔÚµ¹Ò×µãÕó¿Õ¼äÖ±½ÓµÄ½øÐмÆËã¡£¾ÖÓòÊÆº¯Êý»áÓ°Ïì¼ÆË㣬ÔÚCASTEP¼ÆËãÖÐÒ»°ã²ÉÓ÷Ƕ¨ÓòÊÆº¯Êý¡£±¾ÎÄÔÚ½øÐÐBFGS¾§Ìå½á¹¹¼¸ºÎÓÅ»¯Ê±¾ÍÑ¡ÔñÁ˷ǾÖÓòÊÆº¯Êý¡£¾­¹ý½ÃÕýºóµÄ¾ØÕóÔªËØ¿ÉÒÔÃèÊöÈçÏ£º

11??cP???c(V,r)??...........................10r?c???i?m??kkkkknlk

ÀûÓó¬ÈíØÍÊÆ£¨Ultra soft Pseudopotential£©¼ÆËãʱ»áÔö¼Ó¶îÍâ¾ØÕóÔªËØ£¬ÔÚĿǰCASTEP¼ÆËãÖÐÕⲿ

·Ö¾ØÕóÔªËØ²¢Ã»ÓÐÉæ¼°¡£²ÉÓù淶±£ÊØÊƼÆËã½á¹û·¢ÏÖÓë²ÉÓó¬ÈíØÍÊÆ¼ÆËã·ûºÏµÄºÜºÃ£¬Òò´Ë¶îÍâµÄÄDz¿·Ö¾ØÕóÔªËØ¶ÔÓÚ¼ÆËã½á¹ûµÄÓ°Ïì²»´ó¡£

¾§Ìå¹âѧÐÔÖÊIR²¿·ÖÊÜÄÜ´øÄÚ²¿µÄÓ°Ïì½Ï´ó£¬²ÉÓþ­ÑéDrude±í´ïÐÎʽ¾Í¿ÉÒÔ¾«È·µØÃèÊöÕâ¸öÓ°Ïì¡£

?0?D(?)?i?1??D

DrudeУÕýµÄ¹âµ¼ÂÊ?0ºÍDrudeÏÞÖÆÏµÊý?DÓë²ÄÁÏÐí¶àʵ¼Ê²ÎÊýÓйأ¬Ò»°ãÕâЩ²ÎÊý¿ÉÒÔͨ¹ýʵÑéµÃµ½¡£½áºÏÉÏʽºÍʽ7¾Í¿ÉÒÔÁ˽â½éµçº¯ÊýÖÐDrudeµÄ¹±Ï×£¬Í¬Ñù¿ÉÒԵõ½ÔÚÆäËü¹âѧ³£ÊýÖеķֲ¼¡£DrudeÏÞÖÆ²ÎÊýÃèÊöÁ˼ÆËã¹ý³ÌÖÐÎ´Éæ¼°ÒòËØÒýÆð¹âÆ×¿í»¯ÏÖÏ󣬱ÈÈçµç×Ó¼äµÄÉ¢ÉäЧӦ£¨°üÀ¨AugerЧӦ£©¡¢µç×ÓÓëÉù×ÓÖ®¼äµÄÉ¢ÉäЧӦÒÔ¼°µç×ÓÓë¾§Ìå½á¹¹È±ÏÝÖ®¼äµÄÉ¢ÉäЧӦµÈ¡£ ÔÚCASTEPÖйâѧÐÔÖʼÆËã½á¹ûµÄ׼ȷÐÔÓëÏÂÁÐÒòËØÓйأº 1.µ¼´øÊýÁ¿£¨Number of conduction bands£©£ºÖ±½Ó¾ö¶¨ÁËKramers-Kronig±ä»»µÄ׼ȷÐÔ¡£ 2.½ØÖ¹ÄÜÁ¿(Energy cutoff)£ºÌåϵÄÜÁ¿½øÐеü´ú¼ÆËã¹ý³ÌÖУ¬µç×Ó»ù̬ÄÜÁ¿±¾Õ÷Öµ¾«¶ÈÖ±½ÓÓ°ÏìÄÜ´ø½á¹¹ÒÔ¼°¹âѧÐÔÖÊ£¬Ìá¸ß½ØÖ¹ÄÜÁ¿µÄÊýÖµ¿ÉÒÔÌá¸ß¼ÆË㾫¶È£¬¿ÉÒԵõ½¸ü׼ȷδռ¾Ý̬µÄ×ÔÇ¡µçºÉÃܶȺÍÕð

14

CASTEP¼ÆËãÔ­Àí---------XBAPRS

¶¯×ÔÓɶȡ£

3.µü´ú¼ÆËãÖÐKµãÊýÁ¿(Number of k-points in the SCF calculation)£ºÓë½ØÖ¹ÄÜÁ¿¶ÔÌåϵ»ù̬ÄÜÁ¿¼ÆËãÓ°ÏìÒ»Ñù£¬KµãÊýÁ¿Ô½¶à£¬µü´ú¼ÆËãÄÜÁ¿Ô½×¼È·¡£

4.»ý·ÖBrillouin zone KµãÊýÁ¿(Number of k-points for Brillouin zone integration)£ºÔÚ¼ÆËã¹âѧÐÔÖʾØÕóÔªËØÊ±Brillouin zoneѡȡµÄKµãÊýÁ¿Ó¦µ±ÊǺÏÊʵģ¬Óëµç×ÓÄÜÁ¿Ïà±È£¬¾ØÕóÔªËØÔÚBrillouin zone±ä»¯¸ü¿ì£¬Òò´Ë±ØÐëѡȡ×ã¹»ÊýÁ¿µÄKµãÀ´Ìá¸ß¾ØÕóÔªËØ¼ÆËã½á¹ûµÄ׼ȷÐÔ¡£

´ÓĿǰ¼ÆËã½á¹û¶Ô±ÈÀ´¿´£¬Ìá¸ßÉÏÊö²ÎÊýµÄ׼ȷÐÔʱ£¬¹âÆ×ÖÐÌØÕ÷·å¿ÉÒÔ¿ìËٵشﵽʵ¼ÊµÄÒªÇó¡£µ±È»CASTEPÖжԹâѧÐÔÖʵļÆË㻹Óв»ÉٵľÖÏÞÐÔ£¬µç½éÖʼ«»¯ÒýÆðµÄ¾ÖÓò³¡Ð§Ó¦ÔÚÏÖÔÚ¼ÆËãÖб»ºöÂÔÁË£¬Õâ¶Ô¹âÆ×¼ÆËãÓÐÒ»¶¨µÄÓ°Ï죬µ«ÔÚĿǰ¼ÆË㷽ʽϽ«ÊÇÎÞ·¨½øÐеġ£×¼Á£×ÓºÍDFTÄÜ´ø´øÏ¶ÒÔ¼°¼¤×ӵȶ¼»áÓ°Ïì¼ÆËã½á¹û¡£

״̬ÃܶÈÔÚBrillouin zoneÇøµÄ±íʾ£º ¸ø¶¨ÄÜ´øn¶ÔÓ¦µÄ״̬ÃܶÈNn(E)¶¨ÒåΪ£º

dkNn(k)??3?(E?En(k))

4?En(k)ÃèÊöÁËÌØ¶¨µÄÄÜ´ø·Ö²¼Çé¿ö£¬»ý·ÖÔÚÕû¸öBrillouin zone½øÐС£ÁíÍâÒ»ÖÖ±íʾ״̬Ãܶȵķ½·¨»ùÓÚ

Nn (E)dEÓëµÚN¼¶ÄÜ´øÔÚÄÜÁ¿Eµ½E+dE·¶Î§ÄÚÔÊÐí²¨Ê¸Á¿Êý³É±ÈÀý¡£×ÜÌå״̬ÃܶÈN£¨E£©¾ÍÊǶÔËùÓеÄÄÜ´øÔÊÐíµç×Ó²¨Ê¸Á¿ÇóºÍ£¬´ÓÄÜ´ø¼«Ð¡Öµ»ý·Öµ½·ÑÃ×Äܼ¶¾ÍµÃµ½Á˾§ÌåÖаüº¬µÄËùÓеĵç×ÓÊý¡£ÔÚ×ÔÐý¼«»¯ÌåϵÖÐ״̬ÃܶȿÉÒÔÓÃÏòÉÏ×ÔÐý£¨¶àÊý×ÔÐý(majority spin)£©ºÍÏòÏÂ×ÔÐý£¨ÉÙÊý×ÔÐý(minority spin)£©·Ö±ð½øÐмÆË㣬ËûÃǵĺ;ÍÊÇÕûÌå״̬Ãܶȷֲ¼£¬ËüÃǵIJîÖµ³ÆÎª×ÔÐý״̬Ãܶȷֲ¼¡£½èÖúÓÚ״̬ÃܶÈÕâ¸öÊýѧ¸ÅÄî¿ÉÒÔÖ±½Ó¶Ôµç×ÓÄÜÁ¿·Ö²¼½øÐлý·Ö¶ø±ÜÃâÁ˶ÔÕû¸öBrillouin zone»ý·Ö¡£×´Ì¬Ãܶȷֲ¼¾­³£ÓÃÓÚ¿ìËÙÖ±¹ÛµÄ·ÖÎö¾§ÌåµÄµç×ÓÄÜ´ø½á¹¹£¬±ÈÈç¼Û´ø¿í¶È¡¢¾øÔµÌåÖÐÄÜ϶ÒÔ¼°Ö÷ÒªÌØÕ÷Æ×·åÇ¿¶È·ÖÎö£¬Õâ¶ÔÓÚ½âÊÍʵÑé¸÷ÖÖÆ×Êý¾ÝÓкܴóµÄ°ïÖú¡£×´Ì¬ÃܶȻ¹¿ÉÒÔÁ˽⵱¾§ÌåÍⲿ»·¾³ÈçѹÁ¦µÈ·¢Éú±ä»¯Ê±µç×ÓÄÜ´øµÄ±ä»¯Çé¿ö¡£

״̬ÃܶÈÊýÖµ»¯¼ÆËã·½·¨ºÜ¶à£¬×î¼òµ¥µÄ·½·¨ÊǶԸ÷¸öÄÜ´øµç×ÓÄܼ¶½øÐвÉÓÃÖù״ͼȡÑùGaussianÄâºÍ¡£ÓÃÕâÖÖ·½·¨»æÖƵÄ״̬Ãܶȷֲ¼Í¼²»´æÔÚÀàËÆÓÚvan-HoveÆæµã¼âÈñ·Ö²¼£¬µ«Ö»ÐèÒªÉÙÁ¿µÄKµã¼´¿É¡£ÆäËûµÄ׼ȷ·½·¨»ùÓÚ¶ÔBrillouin zone²Î¿¼µãÖ®¼ä²ÉÓÃÏßÐλò¶þ´Î·½Äڲ淨¡£Ä¿Ç°×î¿É¿¿ºÍÆÕ±éʹÓõķ½·¨ÊÇËÄÃæÌ岿Èë·¨£¬µ«ÕâÖÖ·½·¨ÓëBrillouin zoneÍø¸ñÌØÊâµãÊDz»Èںϵġ£Òò´ËCASTEPʹÓÃÁËÓÉAckland·¢Õ¹µÄ¼òµ¥µÄÏßÐÔÄڲ淨£¬¶ÔMonkhorst-Packµ¹Ò×»ù×鯽ÐÐÁùÃæÌå²ÉÓÃÏßÐÔÄڲ淨£¬ÄÜ´øÄÜÁ¿×éºÏ»ù×é½øÐÐÖù×´È¡Ñù¡£

2.4 ƫ̬Ãܶȣ¨PDOS£©ºÍ¾ÖÓò״̬ÃܶÈ(LDOS)

ƫ̬Ãܶȣ¨PDOS£©ºÍ¾ÖÓò״̬ÃܶÈÊÇÒ»ÖÖ·ÖÎöµç×ÓÄÜ´ø½á¹¹ÓÐЧµÄ°ë¾­Ñé·½·¨¡£¾ÖÓò״̬ÃܶȱíʾÁËÌåϵÖв»Í¬Ô­×ÓÔÚ¸÷¸öÄܯ׷¶Î§ÄÚµç×Ó״̬·Ö²¼Çé¿ö¡£Æ«Ì¬Ãܶȣ¨PDOS£©½øÒ»²½½«ÉÏÊö·Ö²¼ÒԽǶ¯Á¿¹±Ï×½øÐÐÁ¿»¯·ÖÎö¡£Á˽â״̬Ãܶȷֲ¼·åÖµÖÐS¡¢PºÍD¹ìµÀ¹±Ï×ÊǺÜÓÐÓõġ£LDOSºÍPDOSÌṩÁËÒ»ÖÖ¶¨Á¿·ÖÎöµç×ÓÔÓ»¯×´Ì¬µÄ·½·¨£¬¶ÔÓÚ½âÊÍXPSºÍ¹âÆ×·åÖµµÄÆðÔ´ºÜÓаïÖú¡£PDOS¼ÆËã»ùÓÚMulliken population·ÖÎö£¬Ã¿¸ö¸ø¶¨Ô­×Ó¹ìµÀÔÚÄÜ´ø¸÷¸öÄÜÁ¿·¶Î§ÄÚ·Ö²¼¾ù±íʾ³öÀ´£¬Ìض¨Ô­×ÓËùÓйìµÀµÄ״̬Ãܶȷֲ¼ºÍÒÔLDOS±íʾ³öÀ´¡£ÓëÕûÌå̬ÃܶȼÆËãÏàËÆ£¬²ÉÓÃÁ˸ß˹»ìºÏËã·¨»òÏßÐÎÄڲ淨¡£

Brillouin zone»ý·ÖÈ¡Ñù

´ó¿ì¹ÌÌåÖеç×Ó״ֻ̬ÔÊÐí´æÔÚÓÚÓɱ߽çÌõ¼þÈ·¶¨Ò»ÏµÁУëµãÖУ¬¹ÌÌåÖÜÆÚÐԽṹÖаüº¬ÁËÎÞÏÞÊýÁ¿µÄµç×Ó£¬Õâ¶ÔÓ¦ÓÚÎÞÏÞÊýÁ¿µÄ£ëµã¡£ÎÞÏÞÊýÄ¿µÄµç×Ó²¨º¯Êý¼ÆËãÀûÓÃBloch¶¨Àíת±äΪÓÃÓÐÏÞÊýÁ¿£ëµã¼ÆËãÓÐÏÞÊýÁ¿µÄ²¨º¯Êý¡£Ã¿¸ö£ëµã´¦µç×ÓÕ¼¾Ý̬¶¼»á¶Ôµç×ÓÊÆÓй±Ï×£¬Òò´ËÔÚÀíÂÛÉÏÒª½øÐÐÎÞÏÞÊýÁ¿µÄ¼ÆËã¡£¶ÔÓÚÊ®·ÖÁÙ½üµÄ£ëµã£¬ËüÃǵĵç×Ó²¨º¯Êý¼¸ºõÊÇÍêÈ«ÏàͬµÄ£¬Òò´ËÔڣģƣԱí´ïÖжÔËùÓУëµãÇó

15

CASTEP¼ÆËãÔ­Àí---------XBAPRS

ºÍ£¨µÈ¼ÛÓÚ¶ÔÕû¸öBrillouin zone»ý·Ö£©¿ÉÒÔ²ÉÓÃÓÐЧµÄÀëÉ¢»¯ÊýÖµ¼ÆË㣬¼´ÔÚBrillouin zoneѡȡÓÐÏÞÊýÁ¿µÄÌØÊâµã¡£½øÒ»²½¿¼Âǵ½¶Ô³ÆÐÔ£¬Ö»¶ÔBrillouin zoneÎÞ·¨¼ò²¢µÄ²¿·Ö²Å¼ÆÈë¼ÆËã¹ý³Ì¡£PayneÒÔ¼°Srivastava and WeaireµÈÈ˵ÄÎÄÏ×Ìá¹©ÌØÊâ£ëµãÑ¡Ôñ·½·¨ÒÔ¼°ÇóºÍ¼ÓȨµÄÆÀÂÛ¡£²ÉÓÃÉÏÊö·½·¨ÒÔºó£¬Ñ¡ÓúÜÉٵģëµã¶Ô¾øÔµÌåµç×Ó״̬¼ÆËã¾Í¿ÉÒÔ»ñµÃ¶Ôµç×ÓÊÆºÍ×ÜÄÜÁ¿×¼È·µÄ½üËÆ¡£¶ÔÓÚ½ðÊôÌåϵ¶øÑÔΪÁ˵õ½·ÑÃ×Äܼ¶×¼È·ÐÔ£¬ÐèÒª¸üÖÂÃܵģëµãÊýÁ¿¡£²ÉÓøü¶à£ëµãÊýÁ¿¾Í¿ÉÒÔ¼õСÒò£ËµãÊýÁ¿ÏÞÖÆ¶ø²úÉúµÄ¶Ô×ÜÄÜÁ¿¼ÆËãµÄÎó²î£¬Óë»ñµÃ»ù×éÊýÁ¿·½³ÌÊÕÁ²·½·¨ÀàËÆ¡£µ±¶Ô¶Ô³ÆÐÔ²»Í¬µÄÁ½¸öÌåϵµÄÄÜÁ¿½øÐжԱÈʱ£¬Óë£ëµãÈ¡ÑùÏà¹ØµÄ¼ÆËãÊÕÁ²¾«¶ÈÒª¸ü¸ß£¬ÀýÈç±È½Ï£Æ£Ã£Ã»ò£È£Ã£Ð½á¹¹Ïà¶ÔÎȶ¨ÐÔ¡£ÔÚÕâÖÖÇé¿öϼÆËãÎó²îÊDz»¿É±ÜÃâµÄ£¬Òò´ËÄÜÁ¿±ØÐë´ïµ½¾ø¶ÔÊÕÁ²¾«¶È¡£

ҪעÒâµÄÊÇ£¬Ìåϵ×ÜÄÜÁ¿²»»áÒò£ëµãÊýÁ¿µÄ²»Í¬¶ø·¢Éú±ä»¯£¬Òò´Ë¼´Ê¹ÊÕÁ²¾«¶ÈºÜµÍʱÄÜÁ¿¼ÆËãÒ²Ò»Ñù£¬Õâ¾ÍÓëÆ½Ãæ²¨»ù×齨ֹÄÜÁ¿µÄÊÕÁ²¼ÆË㲻ͬ£¬ºóÕ߯½Ãæ»ù×éÔö´óʱ×ÜÄÜÁ¿»á¼õÉÙ¡£

Monkhorst-PackÌØÊâµã£¨ special points£©

Monkhorst-Pack·¢Õ¹ÁËÒ»ÖÖĿǰÆÕ±é²ÉÓõÄÌØÊâ£ëµã²úÉú·½·¨£¬×î³õÖ»ÔÚÁ¢·½ÌåϵÖÐʹÓ㬺óÀ´

Monkhorst-Pack½«Æä½øÒ»²½À©Õ¹µ½ÁËÁù·½¾§¸ñÖУ¬ÔÚµ¹Ò׿ռäÑØ×Å×ø±êÖáÉú³É¾ùÔȹæÔò·Ö²¼µÄ£ëµãÍøÂç¡£Monkhorst-PackÍøÂç²ÉÓÃÈý¸ö»ý·ÖÀ´¶¨Ò壬qi where i=1,2,3£¬È·¶¨ÁËÓëÖ÷×ø±êÖáÖ®¼äµÄÆ«²î¡£ÕâЩ»ý·ÖµÃµ½ÁËÏÂÃæµÄһЩÊý×Ö£º ur=(2r-qi-1)/2qi

where r varies from 1 to qi.

The Monkhorst-Pack grid is obtained from these sequences by: kprs=upb1 + urb2 + usb3

q1q2q3Õâ¸ö»ù×鲻ͬµã½øÒ»²½µ÷ºÍ£¬¶Ôµ÷ºÍ»ù×éÖеÄÌØ¶¨µã°´ÕÕÆä¾µÏñ¶Ô³Æµã½øÐмÓȨÐÔÈ¡Ñù¡£ ÔÚ¶Ô»ù×éÖÐËùÓеãµ÷ºÍǰ£¬¿ÉÒÔÔö¼ÓÒ»¸ö³£Êý±ä»¯£¬Ó¦ÓÃÓÚÁù·½µãÕó½á¹¹Ê±£¬ÔÚÑØa and b Öá·½ÏòËùÓеã²úÉúÒ»¸öÇá΢ÐÞÕýµÄ½á¹û¡£ up=(p-1)/qi

Where p varies from 1 to qi.

¼ÆËã²ÄÁÏѧ±¨¸æÖÐÓ¦µ±×¢ÒâµÄÎÊÌ⣺

Ëæ×ÅÐÂÒ»´ø²ÄÁÏѧ¼ÆËãÈí¼þµÄ²»¶Ï¿ª·¢ºÍ¸üУ¬²ÉÓüÆËã»úÀ´Ä£ÄâºÍÔ¤²â²ÄÁϵÄÐÔÄÜÒѾ­³ÉΪ¼ÆËã²ÄÁÏ¿ÆÑ§ÖеÄÇ°ÑØÈȵ㣬ÿÄêÈ«ÊÀ½çÓÐÊý°ÙƪÓë´ËÏà¹ØµÄÂÛÎÄ·¢±í¡£µ«ÕâЩģÄâµÄ½á¹ûºÜ´óÒ»²¿·ÖÎÞ·¨µÃµ½ºÜºÃµÄÔÙÏÖ£¬Òò¶ø´æÔÚ´óÁ¿µÄ×ÔÏàì¶ÜµÄÐÅÏ¢¡£ÔÚÕâÀïʵ¼ÊÉϺÜÄÑÅжÏÔÚijһ´Î¼ÆËãÖвÉÓõÄÄ£ÐÍ£¬Ëã·¨ÊÇ·ñÊÇ´æÔÚÎÊÌâµÄ£¬Ann E Mattsson1, Peter A SchultzµÈÈËÌá³öÁËÈçºÎ²ÅÄÜ»ñµÃÓÐÒâÒåµÄÄ£Äâ½á¹û£¬´Ó¼ÆËã·½·¨£¬Æ½Ã沨»ù×飬ÄÜÁ¿½ØÖ¹£¬ØÍÊÆº¯Êý£¬Óë¼ÆËãÐÔÖÊÏà¹ØµÄ³¬¾§°û½á¹¹µÄ½¨Á¢ÒÔ¼°ÖÜÆÚÐԱ߽çÌõ¼þµÄÉ趨µÈһϵÁеÄÎÊÌâ¶¼¶Ô×îÖյļÆËã½á¹û²úÉúÓ°Ï죬Òò´Ëµ±ÂÛÎÄÖгöÏֵĽá¹û³öÏÖì¶Üʱ¾ÍÐèҪͨ¹ý¶Ô¼ÆËãϸ½ÚµÄÃèÊöÀ´ÅÐ¶ÏÆäÕýÈ·ÐÔ¡£Ò»°ã¶øÑÔ¼ÆËã½á¹ûÊÇÈß³¤µÄ£¬Òò´ËÓбØÒª½«ÆäÓëÏàÓ¦µÄÂÛÎÄÔÚÍøÂçÉÏ·¢±í£¬ÀûÓÃÒòÌØÍøÀ´ÈÃÑо¿ÈËÔ±Äܹ»»ñµÃÕâЩϸ½ÚÐÅÏ¢£¬´Ó¶ø¶ÔÂÛÎĵļÆËã½á¹û½øÐÐÖØ¸´ºÍÑéÖ¤¡£Îª´Ë£¬ËûÃÇÌá³öÒÔϵÄÖ¸µ¼ÐÔÒâ¼û£º Ó°Ïì¼ÆËã½á¹û¾«¶ÈµÄÒòËØ£º

1.ØÍÊÆÑ¡Ó㨠PPs£©: If used, identify them. Any deviation from standard, published PPs should be described in

16

CASTEP¼ÆËãÔ­Àí---------XBAPRS

sufficient detail for the work to be reproducible.

2. k points: Report the sampling that was used and which convergence tests were performed.

3. Basis sets/kinetic energy cutoff: Basis sets should be identified and, if non-standard, the reason for using them given. If feasible, a calculation should be repeated with another appropriate basis set and the result reported. If plane waves are used the cutoff should be given along with the convergence it affords. 4. Trajectory length and time step in AIMD: Motivate why they are appropriate. 5. Equilibration in AIMD: How are the initial configurations prepared?

6. Fictitious electron mass in CPMD: Report and motivate the choosen mass. (b) Factors affecting accuracy:

1. Functional: First and foremost, which functional was used? It is a good practice to repeat some of the key calculations using a second functional and report the result. This provides an estimate of the accuracy as well as information highly important Topical Review R27 for further development of functionals. Even negative results are valuable¡ªwhich functional not to use for a specific system.

2. System size: Is the property under study converged with respect to the size of the super cell or cluster? 3. Relaxation: Report on whether only volume or full relaxation was used. Justify the reliability of any results obtained for an unrelaxed system.

4. Boundary conditions: The exact treatment of the boundary conditions should be described for a simulation where the system is not a simple bulk crystal.

ÀûÓÃCASTEPÄ£Äâ¼ÆËãʵÀý

Ò»£¬¼ÆËã±¾Õ÷°ëµ¼Ìå¹èµÄÄÜ´ø½á¹¹ºÍ״̬ÃܶȵÈÐÔÖÊ

¼ÆËã¹ý³Ì·ÖΪÈý¸ö²½Ö裺Ê×ÏÈÊǽ¨Á¢¹èµÄ¾§Ìå½á¹¹¼ÆËãÄ£ÐÍ£¬Õâ¸ö¿ÉÒÔÔÚMSÎïÖʽṹÊý¾Ý¿âÖе÷Óü´¿É¡£ÔÚ¼ÆËãʱΪÁ˽Úʡʱ¼ä£¬¼õÉÙ¼ÆËãÁ¿½«¹èµÄÆÕͨµÄ¾§Ìåת»¯ÎªÔ­°û½á¹¹£¬Ò»¸öÔ­°ûÖаüº¬9¸öÔ­×Ó¡£½ÚÏÂÀ´ÊǶԾ§ÌåÔ­°û½á¹¹½øÐм¸ºÎ½á¹¹ÓÅ»¯£¬µ±È»ÆäÖÐÒ²º¬¸ÇÁ˶ÔÌåϵ×ÜÄÜÁ¿µÄ×îС»¯¡£½á¹¹ÓÅ»¯¹ý³ÌÖеÄÁ½¸öͼ±íÎĵµ·Ö±ð±íʾÁËÓÅ»¯²½ÖèÖÐÌåϵÄÜÁ¿µÄ±ä»¯ºÍÊÕÁ²¾«¶È£¬ÅжÏÊÕÁ²ÊÇ·ñ³É¹¦¾ÍÒª²é¿´×îÖÕÍê³É¼ÆËãºó£¬ÄÜÁ¿µÄÊÕÁ²¾«¶ÈÊÇ·ñ´ïµ½ÁËÊÂǰµÄÉ趨ֵ¡£×îºóÊǼÆËãÐÔÖÊ£¬ÔÚ¼ÆËã״̬ÃܶÈʱ¿ÉÒÔ¼ÆË㲻ͬԭ×Ó¸÷¸ö¹ìµÀ°´ÕսǶ¯Á¿·Ö²¼µÄƫ̬Ãܶȣ¨PDOS£©£¬µ±ÌåϵÊÇ×ÔÐý¼«»¯Ê±£¬Æ«Ì¬Ãܶȣ¨PDOS£©Öаüº¬ÁËÌåϵ¶àÊý×ÔÐý(majority spin)ºÍÉÙÊý×ÔÐý(minority spin)µÄƫ̬Ãܶȣ¨PDOS£©¡£¹âѧÐÔÖʵļÆËãÊÇÄ£ÄâÖеÄÒ»¸öÄѵ㣬´ÓĿǰ·¢±íµÄÎÄÏ×À´¿´£¬Ó°Ïì¹âѧÐÔÖʼÆËãµÄÒòËØºÜ¶à£¨¼û¹âѧ¼ÆËãÔ­Àí²¿·Ö£¬¶Ô´ËÓÐÏêϸÃèÊö£©£¬ÔÚÑо¿ÌåϵÓгä×ãʵÑéÊý¾ÝµÄÌõ¼þÏ£¬¿ÉÒÔ¶ÔÄÜ´ø²ÉÓá°¼ôµ¶¡±µÄ¹¤¾ß¶ÔÄÜ´ø´øÏ¶½øÐиÕÐԵĵ÷Õû£¬»ñµÃÓëʵÑé½á¹û·ûºÏ½ÏºÃµÄ½áÂÛ¡£µ«¶ÔÓÚ³õѧÕß¶øÑÔ£¬Õâ¸ö¹¤¾ßÒ»°ãÊDz»ÍƼöʹÓõġ£×÷Õß¶ÔÓÚ¹èµÄ¼ÆËãÍêÈ«°´ÕÕÉÏÊö·½°¸Íê³É¡£ÏêϸµÄ¼ÆËã½á¹ûºÍ¼ÆËã·½·¨¼û±¾ÎÄËù¸½´øµÄרÃÅÎÄÕ¡£ ¶þ£¬²óÔÓ°ëµ¼ÌåInPÐÔÖʼÆËã

µÚÈýÖ÷×åºÍµÚÎåÖ÷×åÔªËØÖ®¼äÐγɵİ뵼Ì壬ĿǰԽÀ´Ô½Êܵ½µÄÖØÊÓ£¬ÔÚÄÉÃײÄÁÏÖУ¬¸÷ÖÖÄÉÃ×µç×ÓÆ÷¼þÈ糡ЧӦ¾§Ìå¹Ü£¬°ëµ¼ÌåÄÉÃ×Á¿×ÓÚ壬ÄÉÃ×Á¿×ӵ㼤¹âÆ÷µÈ¾ù¹ã·º²ÉÓÃÁËÖîÈçAlAS InPµÈ²ÄÁÏ£¬±¾ÎĶÔInPÄÜ´ø½á¹¹¡¢×´Ì¬ÃܶÈÒÔ¼°¹âѧÐÔÖʽøÐÐÁ˼ÆËã¡£¼ÆËã²½ÖèÓëǰÎÄÃèÊöÏàͬ¡£Ïêϸ½á¹û¼ûÎÄÕ¶þ¡£

Èý£¬FeS2ÐÔÖʼÆËã

¶þÁò»¯ÑÇÌúÊÇÒ»ÖÖÊܵ½¹ã·ºÑо¿µÄÕ­´øÏ¶µÄ°ëµ¼Ì壬ÆäÄÜ´ø´øÏ¶Îª0.95eV¡£Ð¤ÆæµÈÈËÒ²²ÉÓÃCASTEP¶Ô¶þÁò»¯ÑÇÌúÕûÌå״̬ÃܶȺͣ¨100£©¾§ÃæË«²ã³¬½á¹¹×´Ì¬ÃܶȵļÆËã½á¹û½øÐÐÁ˶Աȣ¬·¢ÏÖÁ˱íÃæÌ¬¶Ô״̬ÃܶȷåµÄ·ÖÁÑ¡£×÷ÕßÒ²Ê×ÏȽ¨Á¢Á˶þÁò»¯ÑÇÌúµÄ¾§Ìå½á¹¹£¬¶ÔÓÅ»¯ºóµÄ½á¹¹Ò²½øÐÐÁ˼ÆË㣬µÃµ½ÄÜ´ø´øÏ¶µÄ½Ï׼ȷ½á¹û£¬µ«ÔÚÄÜ´øµÄ¶¥²ã³öÏÖÁËÎÄÏ×ÖÐδ³öÏÖµÄнṹ£¬Òò´Ë»¹ÐèÒªÆäËûÎÄÏ×½øÐÐ֤ʵ¡£×÷ÕßÒ²½¨Á¢ÁËË«²ãµÄ¶þÁò»¯ÑÇÌú£¨100£©¾§ÃæµÄ³¬¾§°û½á¹¹£¬µ«ÏÞÓÚ¼ÆËãÄÜÁ¦£¬Ö»¶Ô½á¹¹½øÐÐÁË·Ö×ÓÁ¦³¡µÄ³õ²½½á¹¹ÓÅ»¯¡£Ïêϸ½á¹û¼ûÎÄÕÂÈý¡£ ËÄ£¬ÈýÑõ»¯¶þÂÁÐÔÖʼÆËã

17

CASTEP¼ÆËãÔ­Àí---------XBAPRS

ÈýÑõ»¯¶þÂÁÊǹ㷺ÓÃÓÚ¸´ºÏ²ÄÁÏÖеÄÒ»ÖÖ¸½¼Ó²ÄÁÏ£¬ÔÚµç×Ó¹¤ÒµÖÐÓÃÓڳĵײÄÁÏ¡£×÷ΪÌÕ´ÉÔ­ÁϸüÊÇÆÕ±é¡£ÈýÑõ»¯¶þÂÁÓжàÖÖ¾§ÌåÀàÐÍ£¬Ä¿Ç°¹ã·ºµÃµ½Ñо¿µÄÊǦÁ-ÈýÑõ»¯¶þÂÁ£¬×÷Õß¼ÆËãÁËËüµÄÄÜ´ø½á¹¹ºÍ״̬Ãܶȷֲ¼ÒÔ¼°µç×ÓÃܶȷֲ¼Çé¿ö£¬¼ÆËã½á¹ûÓëʵÑé½á¹ûÏà±È½ÏÊǿɿ¿µÄ£¬µç×ÓÃܶȷֲ¼½ÒʾÁË»¯Ñ§¼üµÄÐÔÖÊ¡£Ïêϸ½á¹û¼ûÎÄÕÂËÄ¡£

Î壬ÆäËû¼¸ÖÖ°ëµ¼Ìå²ÄÁÏÄÜ´ø½á¹¹µÄ¼ÆËã

×÷ÕßÒ²¼ÆËãÁ˼¸ÖÖĿǰÆÕ±éʹÓõİ뵼Ìå²ÄÁϵÄÄÜ´ø½á¹¹£¬¾§Ìå½á¹¹ÔÚ¼ÆËãǰÊǾ­¹ýÁ˽ṹÓÅ»¯µÄ£¬Ä³Ð©¼ÆËãµÄÄÜ´ø´øÏ¶²¢²»ÀíÏ룬ÓëʵÑéÊýÖµÏà±È½Ï£¬²î¾à½Ï´ó¡£µ«·¢ÏÖÁËÄÜ´ø½á¹¹ºÍ¼ÆËã¾§Ìå½á¹¹ÌرðÊÇ»¯Ñ§¼üÀàÐͼäµÄ¹ØÏµÊÇÃÜÇеġ£

ͨ¹ý¶ÔÓÚ¼¸ÖÖÀàÐ͵İ뵼ÌåÄÜ´ø½á¹¹ºÍ״̬ÃܶȵļÆËã±íÃ÷ËûÃÇÓëÔ­×Ó¹ìµÀÔÓ»¯ÀàÐÍ£¬Ô­×Ó¼ä³É¼üÀàÐ͵ȾùÓйØÏµ£¬¼ÆË㼸ÖÖ°ëµ¼Ìå·Ö±ðÊÇ£º±¾Õ÷°ëµ¼ÌåSi,Àë×ÓÐÍÕ­´øÏ¶°ëµ¼ÌåZnO and Cu2O£¬²óÔÓnÐͰ뵼ÌåBN¡£

´ÓÔÓ»¯¹ìµÀÀàÐÍÀ´¿´£¬¹èΪsp3ÔÓ»¯£¬BNΪsp2ÔÓ»¯¡£ÆäÓàÁ½ÖÖÊÇÀë×ÓÐ;§Ì壬»¯Ñ§¼üÖ÷Òª³É·ÖÊÇÀë×Ó¼ü¡£´ÓÄÜ´ø½á¹¹·ÖÎö£¬Àë×ÓÐͰ뵼Ìå·ÑÃ×Äܼ¶ÒÔϵIJ¿·ÖÄÜ´øÐÎ״ƽ»¬£¬¶ø¹²¼Û¼üÔÓ»¯ÀàÐ͵İ뵼ÌåÔÚ·ÑÃ×Äܼ¶ÒÔϲ¿·ÖΪÅ×ÎïÏßÐÍ¡£ÔÚ·ÑÃ×Äܼ¶ÒÔÉϵIJ¿·ÖÁ½Õß²î±ð²»´ó£¬¾ùΪÅ×ÎïÏßÐÍ¡£×´Ì¬ÃܶÈ(DOS)ͼÀ´¿´£¬ZnO and Cu2OÐͰ뵼Ìå¸÷¸ö·Ö²¨Çø·ÖÊǺÜÃ÷ÏԵģ¬ ÔÓ»¯ÐͰ뵼Ìå״̬Ãܶȸ÷¸ö·Ö²¨Çø·Ö²¢²»Ã÷ÏÔ£¬Ò»°ãΪÁ¬ÐøÐÍ£¬Ô­×Ó¹ìµÀ»ìºÏÔÚÕâЩ°ëµ¼ÌåÖÐÊǺÜÃ÷ÏԵġ£

18

CASTEP¼ÆËãÔ­Àí---------XBAPRS

Áù£¬MnNºÍMnAs×ÔÐý״̬Ãܶȷֲ¼Óë¾§Ìå½á¹¹³£Êý¼äµÄ¹ØÏµ

R. de Paiva1, J. L. A. AlvesµÈÈËÎÄÏ×ÖУ¬Ñо¿ÁËÉÁп¿ó½á¹¹µÄMnN ºÍMnAs×ÔÐýÃܶȷֲ¼Ëæ¾§Ìå½á¹¹³£Êý±ä»¯µÄ¹ØÏµ£¬ÉÏÊöÁ½ÖÖÎïÖʵÄÉÁп¿ó½á¹¹²¢²»ÊÇËüÃǵÄÎȶ¨½á¹¹£¬µ«ÔÚÕâÖֽṹÖÐMnÒÔËÄÃæÌåÅäλÐÔÖÊÔÚÐí¶à¶þÔª´ÅÐÔ²ÄÁϾùÓÐÌåÏÖ£¬ÈËÃÇÏàÐÅ£¬ÕýÊÇÃÌÔªËØÕâÖÖÅäλ»·¾³ÐγÉÁ˶ÀÌØµÄ´ÅÐÔÖÊ¡£ÎÄÏ××÷Õß²ÉÓõÚÒ»ÐÔÔ­ÀíµÄDFTÀíÂÛ·Ö±ðÓÃGGAºÍLDA·Ö±ð¼ÆËãÁËËæ×ž§Ìå³ß´ç±ä»¯£¬×ÔÐýÃܶȷֲ¼µÄ±ä»¯Çé¿ö£¬ËûÃÇ·¢ÏÖÉÏÃæÁ½ÖÖÎïÖÊ×ÔÐýÃܶÈ״̬·Ö²¼½á¹¹Óë¾§Ìå³ß´çÃÜÇÐÏà¹Ø£¬µ±MnN³ß´ç´óÓÚ0.490nm,MnAs´óÓÚ0.571nm

ÑÓÉìÉÁп¿ó½á¹¹Êǰë½ðÊôÐ͵Ä,¼´¶àÊý×ÔÐý(majority spin)Ãܶȷֲ¼ÔÚ·ÑÃ×Ãæ´¦ÊÇÁ¬ÐøµÄ,ÉÙÊý×ÔÐý(minority spin)ÃܶÈÔòÔÚ·ÑÃ×Ãæ´¦ÊǾøÔµÌåÐ͵ġ£ËûÃǼÆËãÖо§Ì寽ºâ³ß´ç·Ö±ðÊÇ£º MnN£ºao = 4.19 A¡ã (LDA), and 4.30 A¡ã (GGA)); MnAs£º the magnetic moments are 2:51B and 4:01B respectively at the equilibrium lattice parameters ao = 5:32 ¡ã A(LDA) and 5.71 ¡ãA (GGA).

×÷Õß¼ÆËã¾ù²ÉÓÃGGA£¬MnN£º0.425nm£»MnAs£º0.5977nm¡£×ÔÐýÃܶȷֲ¼ºÍÄÜ´ø½á¹¹»ù±¾ÓëÎÄÏ×½á¹ûÒ»Ö£¬ÔÚMnNÖУ¬×ÔÐýÃܶÈÔÚ·ÑÃ×Äܼ¶¸½½üËæ×ųߴç±ä»¯ÊǺÜÃ÷ÏԵ쬵«MnAsÖÐÔòÓëÎÄÏ×½á¹û²»Ò»Ö¡£

19

CASTEP¼ÆËãÔ­Àí---------XBAPRS

ÏÖ½«ÎÄÏ×½á¹ûÓë×÷Õß½á¹ûÁÐͼÈçÏ£º

´Ó¶àÊý×ÔÐý(majority spin)ÃܶȺÍÉÙÊý×ÔÐý(minority spin)ÃܶÈͼÖпÉÒÔÃ÷ÏԵĵõ½Ìåϵµç×ӵ絼µÄµ¥×ÔÐý¼«»¯ÏÖÏ󣬰ë½ðÊôÌØÐÔÊÇ

Ã÷ÏԵġ£µ«MnAs¼ÆËã½á¹ûÓëÎÄÏײî±ð½Ï´ó£¬ÌرðÊÇ×ÔÐýÃܶÈÓë¾§ÌåËæ³ß´ç±ä»¯µÄ¹ØÏµ²»Ã÷ÏÔ£¬×÷Õß¼ÆËã

20

CASTEP¼ÆËãÔ­Àí---------XBAPRS

ÁËÔÚ0.571nm,0.569nm and 0.550nmµÄÇé¿öϵÄ״̬ÃܶÈÇé¿ö£¬ÈÔȻûÓз¢ÏÖ×ÔÐýÃܶȷֲ¼ÔÚ·ÑÃ×Ãæ´¦Ã÷ÏԵı仯¡£ÌرðÊÇÎÄÏ×ÖÐÌáµ½µÄÉÙÊý×ÔÐý(minority spin)ÃܶÈÔÚ¾§Ìå³ß´çСÓÚ0.571nmʱ»áÔÚ·ÑÃ×Ãæ´¦²úÉúÄÜ϶¡£

Æß£¬ÂϾ§½ç£¨twin boundary)µÄ½¨Á¢

×÷Õß·ÂÕÕCASTEPÎÄÏ×ÌṩµÄ°ïÖú×ÊÁϽ¨Á¢Á˹èµÄÒ»¸ö£¨310£©µÄÂϾ§½ç£¨twin boundary)£¬Ö÷Òª²½ÖèÓУº¾§ÃæÇиѡÔñºÏÊʵÄÇÐÆ¬ºñ¶È£¬°´ÕÕ½¨Á¢±íÃæÄ£Ð͵ķ½·¨½¨Á¢£¨310£©ºÍ£¨-310£©ÂϾ§½ç£¨twin boundary)½á¹¹£¬²¢ÇÒ²ÉÓ÷Ö×ÓÁ¦³¡½øÐÐÓÅ»¯¡£ÈçÏÂËùʾ£º

21

CASTEP¼ÆËãÔ­Àí---------XBAPRS

°Ë£¬DPD¶¯Á¦Ñ§Ä£ÄâË«Ïà·ÖÀë

×÷ÕßÀûÓÃÕâһģ¿é³õ²½½øÐÐÁËË«Ïà·ÖÀ붯Á¦Ñ§Ä£Ä⣬ÀûÓÃÕâ¸öÄ£¿éÄ£ÄâÁËË®ºÍÓÍÁ½ÏàµÄ·ÖÀëÇé¿ö¡£

¹ØÓÚLDAºÍGGAµÄ±È½Ï

ÕâÀïÖ÷ÒªÌÖÂÛLDAºÍGGAÔÚ¼ÆË㲻ͬµÄÄ£ÐÍʱµÄ½á¹û±È½Ï£¬¿ÉÒÔ¶ÔÒÔºó¼ÆËãÖÐÑ¡ÓýϺÏÊʵķºº¯ÐÎʽÌṩһ¶¨µÄ²Î¿¼¡£ÏÂÃæÎÄ×ÖÓÉ×÷Õßժ¼²¢ÇÒ·­Òë×ÔAnn E Mattsson1, Peter A SchultzµÈÈ˵ÄÎÄÕ¡£ John Perdew½¨Á¢ÁËĿǰ¹ã·ºÊ¹Óõķºº¯£¬Ëû½«Jacob¡¯s ladder×÷Ϊ·ºº¯·¢Õ¹¹ý³ÌÖеÄ×ø±ê£¬ÓÃÕâ¸ö¸ÅÄîÀ´¶Ô·ºº¯·ÖÀàÊǺÜÓÐÓõġ£Ã¿ÉÏÒ»¸ö½×Ìݶ¼»áÔö¼Ó·ºº¯ÐÎʽµÄ¸´ÔÓÐÔ¡£

LDA¾ÖÓòÃܶȽüËÆ£¨LDA£©£º¾ÖÓòÃܶȽüËÆ£¨LDA£©ÊǵÚÒ»½×ÌÝ¡£Ëü½ö½ö²ÉÓÿռäµãr´¦µÄµç×ÓÃܶÈn£¨r£©À´¾ö¶¨Äǵ㽻»»-Ïà¹ØÄÜÃܶȵÄÐÎʽ¡£½»»»-Ïà¹ØÄÜÃܶÈÓÉÃܶÈÏàͬµÄ¾ùÔȵç×ÓÆøÍêȫȷ¶¨¡£·ºº¯µÄ½»»»²¿

22

CASTEP¼ÆËãÔ­Àí---------XBAPRS

·Ö¾Í׼ȷµÄÓþùÔȵç×ÓÆøµÄ΢·Ö±í´ï¡£¸÷ÖÖ²»Í¬µÄ¾ÖÓòÃܶȽüËÆ£¨LDA£©½ö½öÊÇÏà¹Ø²¿·Ö±íʾ·½·¨²»Í¬£¬ËùÓÐÏÖ´úÓ¦ÓõľÖÓòÃܶȷºº¯¶¼»ùÓÚCeperlyºÍAlder`sÔÚ£¸£°Äê´ú¶Ô¾ùÔȵç×ÓÆø×ÜÄÜÁ¿µÄMonte CarloÄ£Äâ¡£Perdew-Zunger(PZ),Perdew-Wang(PW) and Vosko-Wilk-Nusair(VWN)¶Ô£Ã£ÁÊý¾Ý½øÐÐÁ˲»Í¬³Ì¶ÈµÄÄâºÍ¡£

¹ãÒåÌݶȽüËÆ£¨£Ç£Ç£Á£©£º£Ç£Ç£ÁÊÇJacob½×Ìݵĵڶþ¸ǫ̈½×£¬½«µç×ÓÃܶȵÄÌݶÈÒ²×÷Ϊһ¸ö¶ÀÁ¢µÄ±äÁ¿£¨|?n(r)|£©£¬ÔÚÃèÊö½»»»£­Ïà¹ØÄÜ·½Ã棬ÌݶÈÒýÈëÁ˷Ƕ¨ÓòÐÔ¡££Ç£Ç£Á·ºº¯°üº¬ÁËÁ½¸öÖ÷ÒªµÄ·½Ïò£ºÒ»¸ö³ÆÎª¡°ÎÞ²ÎÊý¡±£¬·ºº¯ÖÐеIJÎÊýͨ¹ýÒÑÖªÐÎʽÖвÎÊý»òÔÚÆäËü׼ȷÀíÂÛ°ïÖúϵõ½¡£ÁíÍâÒ»¸ö¾ÍÊǾ­Ñé·½·¨£¬Î´Öª²ÎÊýÀ´×ÔÓÚ¶ÔʵÑéÊý¾ÝµÄÄâºÍ»òͨ¹ý¶ÔÔ­×ӺͷÖ×ÓÐÔÖÊ׼ȷµÄ¼ÆËã¡£Perdew,Burke and Emzerhof(PBE)ÒÔ¼°Perdew-Wang from 1991(PW91)ÊÇÎÞ²ÎÊýµÄ£¬ÔÚÁ¿×Ó»¯Ñ§Öй㷺²ÉÓõÄGGA£¬±ÈÈçBecke,Lee,Parr and Yang(BLYP)ÊǾ­ÑéÐÔ¡£LYPУÕý²ÉÓÃÁËÃܶȵĶþ½×LaplaceËã·û£¬Òò´ËÑϸñÉϽ²ÊôÓÚJacob½×ÌݵĵÚÈý½×£¬µ«Í¨³£ÈÔÈ»¹éÀàΪGGA¡£

Meta-GGA:µÚÈý½×Ìݵķºº¯Ê¹ÓÃÁ˵ç×ÓÃܶÈÀ­ÆÕÀ­Ë¹Ëã·û»ò¶¯ÄÜÃܶÈ×÷Ϊ¶îÍâµÄ×ÔÓɶȡ£Tao,Perdew ¼°ÆäͬÊÂ×î½ü¹¹½¨ÁËÎÞ²ÎÊýµÄmeta-GGA£¬TPSS·ºº¯¡£¾­ÑéµÄmeta-GGA²ÉÓÃÁËͨ¹ýÄâºÍµÃµ½µÄÏàÓ¦²ÎÊý¡£ Hyper-GGA£ºÔö¼Ó¾«È·½»»»(exact exchange)¹¹³ÉÁËJacob̨½×µÄµÚËĽ×ÌÝ¡£Ã¿¸öÁ£×ÓµÄÄÜÁ¿¿ÉÒÔͨ¹ýSE¶àÌ岨º¯Êý¼ÆËãµÃµ½£¬Õâ¾ÍÊÇHartree-Fock(HF)½»»»¹«Ê½¡£ÔÚÉÏÊö¹«Ê½ÃèÊöÖвÉÓÃKSµ¥Á£×Ó±¾Õ÷º¯Êý¶ø²»ÊÇHF¹ìµÀ£¬Í¨³£¾Í½Ð¾«È·½»»»¡£

¹ãÒåËæ»úÏà½üËÆ(Generalized random phase approximation):·ºº¯µÄ×î¸ß½×ÌݲÉÓÃÁËEXXºÍ¾«È·²¿·Ö½»»»¡£

²ÉÓÃÆäËûµÄ·ºº¯·ÖÀà·½·¨²»ÈçJacob½×ÌÝÃ÷Îú¡£Ò»ÖÖ·½·¨ÊÇÑÇÌåϵ·ºº¯£¬Ìåϵ²»Í¬µÄ²¿·Ö²ÉÓÃÁ˾­¹ý²»Í¬ÐÞÊεķºº¯À´ÃèÊöÿ¸ö²¿·ÖÖ÷ÒªµÄÎïÀíÏà¹Ø×÷Óá£ÁíÒ»ÖÖ·½·¨Êǽ«·Ö×Ó¼äÏ໥×÷ÓÃ(Van der Waals)ÃèÊöÒ²º¬¸Çµ½·ºº¯ÖС£±íÃæÐ£Õý·½·¨µÄ·¢Õ¹ºÍÒýÈë¿É¿´×÷×îԭʼµÄÑÇÌåϵ·ºº¯£¬¾«È·µÄ±íÃæÄÜ¿ÉÒÔ´Ó¡°jellium¡±±íÃæ»ñµÃ£¨Ò»ÏµÁбíÃæÄ£ÐÍ£©£¬LDA£¬GGA»òÕâЩÌåϵÖÐµÄÆäËûµÄ·ºº¯±íÃæÄܵÄÎó²î¶¼¿ÉÒÔ¼ÆË㡣ͨ¹ý¼Ù¶¨Ò»¸öÌØ¶¨µÄ·ºº¯¿ÉÒÔ¸ø³öÔÚÕæÊµ±íÃæºÍÓëÖ®Ïà¹ØµÄ¡°jellium¡±Ä£ÐÍÏàͬµÄ±íÃæÄÜ£¬¶ÔÕæÊµÌåϵDFT¼ÆËãµÄ±íÃæÄܲÉÓá°Î²²¿¡±Ð£ÕýÀ´½øÐÐÆÀ¹À¡£

ͨ¹ý¶ÔʵÑéÊý¾ÝÄâºÍ»òSE¼ÆËãµÄ׼ȷֵ½¨Á¢µÄ·ºº¯ÊÇÁíÒ»ÖÖ³ÆÎªÔÓ»¯(hybrids)·ºº¯¡£ÔÚÔÓ»¯Ãܶȷºº¯ÖУ¬Ò»¸ö»ìºÏµÄHF½»»»ºÍGGA½»»»Ê¹ÓÃʱÓëGGA»ò£¨ºÍ£©LDA½»»»Ð£ÕýÏà½áºÏ¡£Í¨¹ý¶Ô´óÁ¿ÊµÑé·Ö×ÓÊý¾ÝµÄÄâºÍÀ´¾ö¶¨»ìºÏ³Ì¶È¡£ÔÚÁ¿×Ó»¯Ñ§ÖÐʹÓÃ×î³É¹¦µÄ·ºº¯£¬B3LYP£¨BeckeÈý²ÎÊýÔÓ»¯·ºº¯ÓëLYP·ºº¯Ïà½áºÏ·½·¨£©¾ÍÊÇÔÓ»¯ÐÎʽ¡£ÔÓ»¯TPSShÊÇTPSSÓëHF½»»»µÄ»ìºÏÐÎʽ£¬ÔÓ»¯·ºº¯ºÍÆäËû·ºº¯Ê¹ÓÃÐÔÄܵIJ»È·¶¨ÐÔÓëÄâºÍʱ²ÉÓõÄÔ­×ӺͷÖ×ÓÖÖÀàÒÔ¼°ÐÔÖÊÓйء£¸÷ÖÖ·ºº¯½üËÆµÄ׼ȷÐÔ»áËæ×ÅÑо¿²ÄÁÏÌåϵºÍÐÔÖʶø·¢Éú±ä»¯£¬¶ÔËùÓÐÑо¿Ìåϵ¶øÑÔ£¬Ã»ÓÐÒ»¸ö·ºº¯ÊÇ×îºÃµÄ£¬ÉõÖÁ̸²»ÉÏ¡°ºÃ¡±£¬ÔÚÎïÀíÓ뻯ѧÁìÓòËù¹Û²ìµ½µÄ½á¹û·´Ó³Á˸÷ÖÖ·ºº¯»ù±¾µÄ²»Í¬Ö®´¦¡£ÓëÎïÀíºÍ»¯Ñ§ÓйصÄÁìÓòÑ¡ÓúÏÊʵķºº¯ÊǺÜÓÐÌôÕ½ÐÔµÄÎÊÌ⣬±ÈÈç±íÃæµÄ»¯Ñ§·´Ó¦¡£ÒÔϲ¿·Ö½«ÌÖÂÛÓë·ºº¯½üËÆÓйصĽ¹µãÎÊÌâ¡£

Ñ¡ÔñºÏÊÊ·ºº¯¼ÆË㣺ij¸ö¼ÆËãÄ£ÄâÖзºº¯µÄÑ¡Ôñ¹ý³ÌÊÇÒ»¸öÓ¦µ±ÒýÆð×ã¹»ÖØÊӵĻ·½Ú£¬ÔÚͬһ¸öÈí¼þ°üÖÐͬʱµÄʹÓø÷ÖÖ¿ÉÄܵķºº¯ºÍ½ö·¢±íÓëÒÑ֪ʵÑé½áÂÛÒ»ÖµļÆËã½á¹ûÎ¥±³ÁË¡°Ô¤²â¡±¼ÆËãǰÌᣬʵ¼ÊÉÏÕâÖÖÒ»ÖÂÐÔÔںܶàʱºò½ö½öÊÇÒ»¸öÇɺϡ£ ÔÚ·ºº¯Ñ¡ÔñÉÏûÓÐ×ã¹»¿ÉÒÔ±£Ö¤µÄÌõ¼þ£¬µ«ÔÚÏÂÃæÎÒÃǽ«¸ø³öһЩָµ¼£º

ÖÚËùÖÜÖªµÄÊÇÅÀÉÏ·ºº¯µÄJacob½×ÌÝ¿ÉÒÔϵͳµÄÌá¸ß¼ÆËã½á¹û£¬¶Ô¶à·Ö×ÓÌåϵ²ÉÓÃGGAÔÚ¶àÊýÇé¿öÏÂʤ¹ýLDA¡£Ä¿Ç°ÒѾ­¹ã·ºµÄÈÏʶµ½¶ÔË®µÄÃèÊö²ÉÓÃPBEºÍBLYPÊÇÓÅÏÈÑ¡Ôñ£¬¶ø²»ÊÇLDA¡£È»¶ø£¬²»×ÜÊÇÕâÑù¡£¶ÔijЩÌåϵºÍÐÔÖʵļÆËã²ÉÓÃLDAÒª±ÈGGAºÃ£¬ÌرðÊDZíÃæÄܺÍÐí¶àÑõ»¯ÎïÐÔÖʵļÆËã¡£Òò´Ë£¬ÔÚ¼ÆËãÖвÉÓò»Í¬ÐÎʽµÄ·ºº¯Í¬Ê±¼ÆËã À´»ñµÃ½ÏΪ׼ȷµÄÆÀ¹À¡£ÔÚÈκεÄDFT¼ÆËãÖÐËù²ÉÓõķºº¯ÐÎʽ¶¼Ó¦¸ÃÒÔÊéÃæÐÎʽ±¨¸æ£¬ÔÚʵ¼ÊÓ¦ÓÃÖÐÒ»¸öLDAµÄ׼ȷ¶ÈºÜÉÙÊÜÓëËùÑ¡ÓõÄÏà¹Ø·ºº¯Ó°Ï죬ÔÚLDA¼ÆËãÖвÉÓõÄУÕý·ºº¯±ØÐë˵Ã÷¡£ÔÚ1980ÄêÒÔǰ²ÉÓõÄLDAÏà¹Ø·ºº¯²¢²»ÊÇ»ùÓÚ¶ÔCAµç×ÓÆø¼ÆË㽨Á¢µÄ£¬Òò´ËÓëÏÖÔÚ²ÉÓõķºº¯Ïà±È¼ÆËã½á¹ûµÄ²î±ðÊDZȽϴóµÄ¡£PBEºÍPW91·ºº¯²ÉÓÃÁËÀàËÆµÄ·½·¨À´¹¹½¨£¬¼ÆËã½á¹ûµÄ²î±ðÒ²²»´ó¡£ÓëPW91Ïà±ÈPBEÔÚÐ¾ÇøÓÐÐ§ÊÆ¸üΪƽ»¬£¬ºóÕßÊýÖµÉϲ»Îȶ¨¡£Ò»°ã¶ÔÕâЩ²¢²»½øÐÐÇø·Ö£¬

23

CASTEP¼ÆËãÔ­Àí---------XBAPRS

ͨ¼Ç×÷GGA£¬²»¹ýÎÒÃÇºÍÆäËûµÄÑо¿ÈËÔ±¹ÄÀø»¹ÊÇÓ¦µ±¶Ô¼ÆËãʱ²ÉÓõÄPBE »òPW91ÓèÒÔÇø·Ö£¬²»ÎªÈËÖªµÄÊÂʵÊÇһЩGGAÏà¹Ø·ºº¯£¬±ÈÈçPBEºÍPW91£¬ÊÇÔÚPZ£¬PWºÍVWNÖÐǶÈëÒ»¸öLDAÏà¹Ø·ºº¯£¬Èç¹û¿ÉÄܵĻ°Ò²Ó¦µ±ÓèÒÔ˵Ã÷¡£Ãܶȷºº¯ÀíÂÛÒѾ­¹ã·ºµÄÔÚ¸÷ÖÖ¼ÆËãÖеõ½Ó¦Óã¬ÒѾ­ÓкܶàµÄÎÄÏײûÊöÁËÔÚ¸÷ÖÖ²»Í¬Àà±ðµÄ²ÄÁÏÑо¿ÖвÉÓò»Í¬·ºº¯¼ÆËãµÄÎÊÌâ¡£¾ÍÏñÆäËûÑо¿Ò»Ñù£¬ÂÛÎÄÌṩÁ˶Ôij¸öÐÂÎÊÌâ³É¹¦µÄÑ¡Ó÷ºº¯µÄÏêϸÇé¿ö¡£µ«ÕâЩ²¢²»¶¼Ê®·Ö¿É¿¿£¬±ÈÈç˵ÂÁ¿ÕλÐγÉÄܵļÆËã¡£GGA£¨PW91£©¼ÆËã¿ÉÒԵõ½¹ØÓÚÌåϵÐÔÖʽϺõĽá¹û£¬ÈçµãÕó³£Êý¡¢µ¯ÐÔÄ£Á¿£¬½áºÏÄܵȣ¬Òò´ËGGA¶ÔÂÁµÄ¼ÆËãÖÐÓÅÓÚLDA¡£µ«¶Ôµ¥¸ö¿Õ룬ÕâÖÖ¼ÙÉèÊDz»³ÉÁ¢µÄ¡£LDA¼ÆËãµÄµ¥¸ö¿ÕλµÄÐγÉÄÜ£¬0.7eV,ÓëʵÑé²â¶¨Öµ0.67(3)eVÏà±ÈÒªºÃÓÚPW91¼ÆËãÖµ0.54eV¡£ÊÂʵÊǵ¥¸ö¿ÕλÐγÉÄܽӽüÓÚ±íÃæÐÔÖʶø²»ÊÇÌåϵÐÔÖÊ£¬¶øÈçÉÏÊöLDAÔÚ¼ÆËã±íÃæÄÜ·½Ãæ±ÈGGAÒªºÃ¡£µ±È»¶Ôµ¥¸ö¿ÕλÐγÉÄܽøÐÐÒ»¸ö±íÃæÐ£Õý£¬GGAÐÔÄܾͻᳬ¹ýLDA¡£

ÂÁµÄÕâ¸öÀý×Ó¾Í˵Ã÷ÁËÔÚÈκμÆËãÖÐÑо¿Ê¹Óò»Í¬·ºº¯µÄ¼ÛÖµËùÔÚ¡£¶øÇÒ£¬ÔÚ¼ÆËãÖÐÈç¹ûÑ¡Óõķºº¯²¢Ã»Óиø³öÂúÒâµÄ¼ÆËã½á¹û£¬ÎÒÃDz¢²»ÄÜÒò´ËÇáÒ׵ķůúËü¡£½«ÕâЩ·ñ¶¨µÄ½á¹ûÓë¼ÆËã³É¹¦µÄ·ºº¯Ò»Í¬·¢±í¶ÔÒÔºóDFTÑо¿Ïàͬ»òÀàËÆ¼ÆËãÌṩÁËÓмÛÖµµÄÐÅÏ¢¡£¶Ôͬһ¸ö¼ÆËã¹ý³Ì²ÉÓò»Í¬µÄ·ºº¯¿ÉÒÔÌṩ¼ÆËã½á¹ûÀíÂÛÎó²îµÄ½çÏÞ¡£¶ÔÓÚijЩÎÊÌâ£¬ÌØ±ðÊÇÖ»¶ÔÌåϵÁ¿»¯·ÖÎöʱ£¬²ÉÓò»Í¬µÄ·ºº¯¿ÉÒÔ¸ø³ö¿É¶Ô±ÈµÄ½á¹û£¬Îó²î·¶Î§¿ÉÒÔСµ½²»»á¸Ä±äÌåϵµÄÐÔÖÊ¡£¶ÔÔÚÆäËû·½ÃæµÄÓ¦Óã¬ÌرðÊÇÒªµÃµ½Á¿»¯ÐÅÏ¢£¬Îó²î½çÏÞ»áÔö´óʹµÃ¶ÀÁ¢µÄÔ¤²â¾ÍÎÞ·¨¸ø³ö¡£È»¶ø£¬¼´Ê¹ÀûÓò»Í¬µÄ·ºº¯½øÐеÄDFTµÄ¼ÆËãҲûÓлñµÃ½áÂÛ£¬¶îÍâµÄÐÅÏ¢ÌØ±ðÊÇʵÑéÊý¾Ý¾Í¿ÉÒÔÈ·¶¨ÄǸö·ºº¯Êǿɿ¿µÄ²¢Çҵõ½Ä¿Ç°Ñо¿ÌåϵµÄ¸üºÃµÄÐÅÏ¢¡£ºÏÊʵķºº¯ÔÚ²ÄÁϼÆËãÄ£ÄâÖÐ׼ȷÐÔÊÇ¿ÉÐŵ쬵«²¢²»×ÜÊÇÕâÑù¡£ÏÖÔÚÓÃÓÚ¼ÆËãµÄ·ºº¯¶Ô±íÃæÐÔÖʵļÆËã²¢²»¿É¿¿£¬¶Ô·Ö×Ó¼äÏ໥×÷Óûòɫɢ×÷ÓÃÕâÒ»µãÊǺÜÖØÒªµÄ¡£ÁíÒ»¸öÎÊÌâ¾ÍÊÇLDA»òGGA·ºº¯¶Ô°ëµ¼Ìå»ò¾øÔµÌåÄÜ´ø´øÏ¶¼ÆËã½á¹ûµÄ¿ÉÖØ¸´ÐÔ²»Ç¿¡£´øÏ¶ÎÊÌâ´Ó´ó·¶Î§ÉÏÀ´ËµÊÇ¡°×ÔÏ໥×÷Óá±Îó²îÒýÆðµÄ£¬²ÉÓÃEXXÀ´ÓÐЧµÄÏû³ý¡°×ÔÏ໥×÷Óá±Îó²î¼«´óµÄ¼¤ÀøÁËÕâ¸öÁìÓòµÄ·¢Õ¹¡£È»¶ø¾ÍEXX±¾Éí»¹²»¹»£¬ÒýÈëÒ»¸öÈÚÇ¢µÄУÕý·ºº¯¾ÍÍê³ÉÈ«Ïà¹Ø-½»»»·ºº¯µÄ½¨Á¢¡£µ½Ä¿Ç°ÎªÖ¹ÎÒÃÇ»¹Ã»ÓÐÉæ¼°µ½DFT¼ÆËãÖÐ×ÔÐýÎÊÌ⣬¶à´Î¾­Ñé±íÃ÷¶ÔÓÚ¾øÔµÌåÖеÄȱÏÝÑ¡ÓÃ×ÔÐý¼«»¯ÊÆÊǵõ½ÂúÒâ½á¹ûµÄ¹Ø¼üÌõ¼þ¡£×÷ΪһÖÖÖ÷ÒªµÄ¸Ä½ø·½·¨£¬½ö½ö²ÉÓÃ×ÔÐý¼«»¯Ò²ÊDz»¹»µÄ¡£Á½¸ö×î½üµÄÑо¿ÊÂÀý£ºÒ»¸öÊÇʯӢÖÐÂÁµÄÖû»£¬ÁíÒ»¸öÊÇÂÈ»¯ÄƱíÃæµÄȱÏÝÑо¿£¬¶¼ËµÃ÷ÏÖÔڵķºº¯×ÔÐý¼«»¯ÃܶȹýÓڷǶ¨Óò»¯¡£¡°×ÔÏ໥×÷Óá±Îó²îÓÖÒ»´Î³ÉΪÁËÒ»¸ö¼ÆËãȱÏÝ£¬²»¹ý²ÉÓÃEXX¿ÉÒԵõ½¸ÄÉÆ¡£ÎÒÃǵÄ×îºóÒ»¸öÀý×ÓÊÇÎïÀíºÍ»¯Ñ§½»²æµÄÁìÓò---ÔÚ´ó¿é²ÄÁϱíÃæ·Ö×ÓµÄÎü¸½Ñо¿¡£ÊµÑéÖз¢ÏÖÒ»Ñõ»¯Ì¼·Ö×Ó»áÖ±½ÓÎü¸½ÔÚµ¥¸öµÄPt£¨111£©±íÃæÉÏ¡£µ±Ç°·ºº¯LDA»òGGAÒÔ¼°¼ÆËã·½·¨£¬È«µç×Ó»òØÍÊÆ¶¼Ô¤²âÒ»Ñõ»¯Ì¼·Ö×Ó»áפÁôÔÚÒ»¸ö¿Õλ´¦ÓëÈý¸öPtÔ­×ÓÅäλ¡£¸÷ÖÖ¸÷Ñù²»Í¬µÄ½âÊͶ¼ÓÃÀ´ÃèÊöÀíÂÛÔ¤²âÓëʵÑéÖ®¼äµÄ²î±ð£¬¶ÔĿǰ·ºº¯ÔÚÕâ¸öÎÊÌâÉϵÄʧ°ÜÓдýÓÚδÀ´»ñµÃ½â¾ö¡£Õâ¾Í˵Ã÷ÀûÓÃÏÖÔڵķºº¯À´½øÐÐDFT¼ÆË㣬¼´Ê¹ÔÚ×îÀíÏëµÄ¼Æ»®ºÍ¿ØÖÆÏ£¬Ò²²¢²»ÄÜ×ÜÊÇ»ñµÃÕýÈ·µÄ½á¹û ×î½ü×÷Õß¼ÆËãÁËWCÐÔÖÊ£¬»ñµÃÁËÓëÎÄÏ×ÍêȫһÖµĽá¹û¡£

¼¸ÖÖ³£¼ûµÄØÍÊÆÐÎʽ¼°±í´ïʽ

24

CASTEP¼ÆËãÔ­Àí---------XBAPRS

By XBAPRS

All Rights Received.

For more informations ,please correspond to xbaprs

2005-8-24

25

CASTEP¼ÆËãÔ­Àí---------XBAPRS

·Ö×ÓÁ¦³¡¼ÆËã·½·¨¸ÅÂÛ

·Ö×ÓÁ¦³¡¼ÆËãµÈ¼¶½éÓÚµÚÒ»Ô­Àí¼ÆËãºÍ¾­µä·Ö×Ó¶¯Á¦Ñ§Ö®¼ä,ÊÇÒ»ÖÖ°ë¾­ÑéµÄËã·¨,ÔÚMSÖÐForcesite¾ÍÊÇÕâÖÖËã·¨µÄÄ£¿é¡£Óë¾­µä·Ö×Ó¶¯Á¦Ñ§Ïà±È£¬°ë¾­ÑéË㷨׼ȷÐÔËÆºõ¸üºÃһЩ£¬ÒòΪ°ë¾­ÑéËã·¨ÖÐÔ­×ÓÖ®¼äÏ໥×÷ÓÃÄܲÎÊýÊÇͨ¹ýÑϸñµÄµÚÒ»Ô­Àí¼ÆËãµÃµ½µÄ£¬¿ÉÄܲÉÓõÄÊÇHartree-FockµÄ²¨º¯ÊýËã·¨£¬Ò²¿ÉÄÜÊÇ»ùÓÚDFTµÄËã·¨¡£ÔÚ¾­µä·Ö×Ó¶¯Á¦Ñ§Ä£ÄâÖвÉÓõÄÒ»°ãÊǸ÷ÏîͬÐԵĶÔÊÆº¯Êý£¬±ÈÈçLennard-JonesÊÆ£¬»¹ÓÐһЩ²ÉÓÃÖ¸ÊýË¥¼õÀ´Ä£Ä⻯ѧ½¨µÄÊÆº¯ÊýÈçMorseÊÆµÈ¡£µ±È»×î½üÔÚ¿¼Âǵ½µç×Ó½áºÏÏà¹Ø×÷ÓõĻù´¡ÉÏÓÖÒýÈëÁ˶Էºº¯ÊÆ£¬¶þÌåÏ໥×÷ÓÃÒ²¿ÉÒÔÀ©Õ¹µ½¶àÌåÏ໥×÷Óã¬ÈçÍÅ´ØÊÆ¡£·Ö×ÓÁ¦³¡µÄË㷨ʵ¼ÊÓë¾­µä·Ö×Ó¶¯Á¦Ñ§ÖжÔÔ­×ÓÏ໥×÷ÓõÄÃèÊöÓÐЩÀàËÆ¡£¶ÔÌåϵ×ÜÄÜÁ¿µÄ¼ÆËã¶øÑÔ£¬·Ö×ÓÁ¦³¡ÖÐÓÉÒÔϼ¸¸ö²¿·Ö×é³É£¬¼´¼üÄÜ(Valence)£¬·Ç¼ü×÷ÓÃÄÜ(Non-bond)ºÍ½»²æÏ໥×÷ÓÃÄÜ×é³É(Cross terms)

Etotal?Evalence?Enon?bond?Ecrossterm

Cross-termsÖ÷ÒªÊÇ×é³É¼üÄܸ÷²¿·ÖÖ®¼äµÄñîºÏ×÷Óá£ValenceÕⲿ·ÖÄÜÁ¿»¹¿ÉÒÔ½øÒ»²½»®·ÖΪÏÂÃæÎåÖÖÄÜÁ¿£º

Ebond£ºBond stretch;

Eangle£ºValence angle bending; Etorsion£ºDihedral angle torsion;

Eoop£ºInversion (out of plane interactions); EUB£ºA Urey-Bradely interaction.

Ebond?Eangle?Etorsion?Eoop?EUB

EUBÊÇÒ»ÖÖ¼ä½ÓµÄÈýÌå×÷Óã¬Ò»°ãÊÇ´æÔÚÓÚͬʱÁ¬½ÓÔÚͬһ¸ö¹²ÓÃÔ­×ÓÁ½¶ËµÄÔ­×ÓÖ®¼ä¡£EoopÊǹ²¼Û¼ü

ÌØÓеÄÏ໥×÷Óá£

Cross-termsÊÇΪÁËÌá¸ß¼ÆËã׼ȷÐÔÒýÈëµÄУÕýÏ´æÔÚÕâЩÏîµÄ·Ö×ÓÁ¦³¡¼ÆËã·½·¨Ò»°ãÊÇÏÖ´úÁ¦³¡Ëã·¨£¬ÕâЩУÕýÏîÓÃÀ´±íʾÁÚ½üÔ­×Ó¶Ô»¯Ñ§½¨ÒÔ¼°¼ü½ÇµÄ»û±ä¡£Ð£ÕýºóµÄ·Ö×ÓÁ¦³¡Ëã·¨¿ÉÒÔ¸üºÃµÄ»ñµÃÓëʵÑéÊý¾ÝÏà·ûºÏµÄ½á¹û£¬±ÈÈç·Ö×ÓÕð¶¯ÆµÂÊÆ×¡£½»²æÏ໥×÷ÓÃÏîÖ÷ÒªÓÐһϼ¸²¿·Ö£ºStretch-Stretch¡¢Stretch-Bend-Stretch¡¢Bend-Bend¡¢Torsion-Stretch¡¢Torsion-Bend-Bend¡¢Bend-Torsion-Bend and Stretch-Torsion-Stretch¡£¼ÆËã¾­Ñé±íÃ÷ÕâЩñîºÏ×÷ÓÃÏîµÄ´æÔÚ¶Ô¼ÆËã½á¹û²»Ò»¶¨ÓÐÀû£¬¶ÔÓÚ»û±äºÜ´óµÄ¾§Ìå½á¹¹»ò·Ö×ӽṹ£¬ËùµÃµ½µÄÓÅ»¯½á¹¹ÊDz»ÕæÊµµÄ£¬Òò´Ë¶ÔÕâÀà¼ÆË㻹ÊÇÑ¡Ôñ³õ¼¶µÄ·Ö×ÓÁ¦³¡Ëã·¨£¬·ÀÖ¹ÌåϵÏÝÈë¾ÖÓò×îС״̬¡£

Non-bond×÷ÓÃÓÐÈý²¿·Ö¹¹³É£ºVan der Waals (VdW)¡¢Electrostatic (Coulomb) and Hydrogen bond (h-bond)¡£

Enon?bond?EVdW?ECoulomb?EH?bond

·Ö×ÓÁ¦³¡¼ÆËãÖÐÒ»°ãµÄ±í´ïʽÈçÏÂËùʾ£º¼ÆËãʽÖÐǰËÄÏî·Ö±ð±íʾ:Stretch bond (b), Bend angles (?) away from their reference values, Rotation torsion angles (?) by twisting atoms about the bond axis that determines the torsion angle, Distort planar atoms out-of plane formed by the atoms they are bended to (?)¡£

26

CASTEP¼ÆËãÔ­Àí---------XBAPRS

ºóÃæµÄÎåÏî¾ÍÊÇCross-terms£¬±íÊ¾Ç°ÃæËÄÖÖ×÷ÓÃÖ®¼äµÄÏ໥ñîºÏ×÷Óá£×îºóÒ»ÏîÊǷǼü×÷Ó㬰üÀ¨Lennard-JonesÊÆÐÎʽÏ໥×÷ÓÃÒÔ¼°CoulombÐÎʽµÄ¾²µç×÷Óá£

V(R)??Db[1?exp(?a(b?b0))]2??H?(???0)2??H?[1?Scos(n?)]b??`??H??2???Fbb`(b?b0)(b`?b0)???F??`(???0)(?`??0`)?bb`??`???Fb?(b?b0)(???0)??F??`?(???0)(?`??0`)cos????F??`??`b???`??`

???[ij?iAijr12ij?Bijr6ij?qiqjrij]·Ö×ÓÁ¦³¡¼ÆËã·½·¨Ìصã

·Ö×ÓÁ¦³¡¼ÆËã·½·¨ÓëÑϸñµÄÁ¿×ÓÁ¦Ñ§Ëã·¨Ïà±È£¬×î´óµÄÌØµã¾ÍÊÇ´¦ÀíÌåϵ¿ÉÒԺܴó¡£ÔÚ·Ö×ÓÁ¦³¡µÄËã·¨ÖкܶàµÄ²ÎÊýÀ´×ÔÓڹ㷺ʵÑéÊý¾ÝµÄÄâºÍºÍÑϸñÁ¿×ÓÁ¦Ñ§¼ÆË㣬Òò´ËÕâÀàËã·¨²»½öÔÚÖØ¸´ÊµÑé½á¹¹·½ÃæºÜÊÊÓ㬶øÇÒ²¿·ÖÁ¿×ÓЧӦҲ°üº¬ÔÚÕâЩ°ë¾­ÑéµÄËã·¨ÖÐÁË¡£·Ö×ÓÁ¦³¡Ëã·¨ÌØµã¿É¹éÄÉΪÒÔϼ¸µã£º 1£® ´¦ÀíÌåϵ´óСÓëÁ¿×ÓÁ¦Ñ§¼ÆËãÏà±ÈÒª´ó¼¸¸öÊýÁ¿¼¶£¬Òò´Ë²ÉÓ÷Ö×ÓÁ¦³¡Ëã·¨¿ÉÒÔÄ£ÄâÄý¾Û̬·Ö×ÓÌå

ϵ£¬ÉúÎï´ó·Ö×Ó£¨µ°°×ÖÊ£¬¶àëĽṹ£©£¬¾§Ìå½á¹¹£¬ÓлúºÍÎÞ»ú»¯ºÏÎï·Ö×ӵȣ¬¼ÆËã·½ÃæÖ÷ÒªÊǼÆËãһЩÓë΢¹ÛÁ¿×ÓЧӦ²»Ãô¸ÐµÄÐÔÖÊ£¬ÈçÏà×éÖ¯µÄ·ÖÀ룬״̬·½³ÌÒÔ¼°¼üÄܵȡ£

2£® ¿ÉÒÔ¶Ô¹¹³ÉÌåϵ×ÜÄÜÁ¿µÄ¸÷¸ö²¿·Ö½øÐе¥¶À·ÖÎö£¬±ÈÈçÇ°ÃæÌáµ½µÄÄÜÁ¿¼ÆËãÖмüÄÜÓɳɼü×÷Ó㬷Ǽü

×÷ÓÃÒÔ¼°½»²æ×÷Óõȹ¹³É£¬¿ÉÒÔµ¥¶À·ÖÎöÕâЩ×÷ÓòúÉúµÄÎïÀíЧӦ¡£

3£® ÔÚ·Ö×ÓÁ¦³¡¼ÆËãÖпÉÒÔ·½±ãµÄÒýÈë¸÷ÖÖÔ¼ÊøÌõ¼þ£¬±ÈÈç¹Ì¶¨½á¹¹Öв¿·ÖÔ­×ÓµÄ×ø±ê£¬¹Ì¶¨¾§Ìå¾§¸ñ³£

Êý£¬¾§ÌåÌå»ýµÈ£¬ÕâÐ©Ô¼ÊøÔÚÑо¿ÀàËÆÓÚ½çÃæÎÊÌâʱÊǺÜÖØÒªµÄ¡£ ·Ö×ÓÁ¦³¡ÖÐÎÞ·¨¼ÆËãµÄÌåϵÓУº

Electron transition state (Phonon adsorption)£» Electron transport phenomena£»

Proton transfer (acid/base reactions).

MSÖзÖ×ÓÁ¦³¡Ö§³ÖµÄËã·¨¼ò½é

MSÖÐÖ§³Ö·Ö×ÓÁ¦³¡Ëã·¨µÄÄ£¿éÖ÷ÒªÊÇDiscover ºÍForcesiteÕâÁ½¸ö£¬ÆäÖÐForcesiteÌṩÁËĿǰ¼¸ºõÈ«²¿µÄ·Ö×ÓÁ¦³¡Ëã·¨£¬±ÈÈçCOMPASS¡¢PCFF¡¢CVFFÒÔ¼°UniversalµÈ¡£ÏÖ¶ÔÕâЩ·Ö×ÓÁ¢³¡¼ÆËã·½·¨ÊÊÓ÷¶Î§×ö½éÉÜ£º

1£®Consistent force field-COMPASS and PCFF

×ÔÇ¢³¡·Ö×ÓÁ¦³¡¼ÆËã·½·¨°üÀ¨CFF91,PCFF,CFFÒÔ¼°COMPASS£¬Êǵڶþ´ú°ë¾­ÑéÁ¦³¡Ëã·¨£¬ÆäÄÜÁ¿¼ÆËã°üº¬Á˽»²æñîºÏ×÷ÓÃУÕý¡£ÕâÀà¼ÆËã·½·¨ÖеIJÎÊýÖ÷ÒªÓÉÒÔÏÂÎïÖÊʵÑé»ò¼ÆËãÊý¾ÝµÃµ½£ºº¬H,C,N,O,SÒÔ¼°PµÄ»¯ºÏÎÖ÷ÒªÊÇÓÉÕâÐ©ÔªËØÏ໥֮¼äÐγɵÄÎïÖÊ£»Â±ËØÔ­×ÓÒÔ¼°Àë×Ó£»¼î½ðÊôÑôÀë×ÓÒÔ¼°Ä³Ð©ÔÚÉúÎﻯѧÁìÓòÄÚÖØÒªµÄ½ðÊô¶þ¼ÛÑôÀë×Ó¡£PCFF»ùÓÚCFF91¹¹½¨£¬Ö÷ÒªÔö¼ÓÁ˾ۺÏÎ½ðÊôÒÔ¼°·Ö×ÓɸÌåϵ·½ÃæµÄ¼ÆËã²ÎÊý¡£COMPASSÊÇĿǰ×îÐÂÒ»´úµÄ·Ö×ÓÁ¦³¡¼ÆËã·½·¨£¬Æä¿ª·¢³õÖÔ¾ÍÊÇÓÃÓÚ¼ÆËãÄý¾Û̬ÌåϵÐÔÖʵģ¬ÔÚ½ðÊôÑõ»¯ÎïÒÔ¼°´«Í³µÄ»¯ºÏÎï¼ÆËã·½ÃæÒѾ­È¡µÃÁ˺ܴóµÄ½ø²½¡£×ܵÄÀ´Ëµ×ÔÇ¢³¡·Ö×ÓÁ¦³¡¼ÆËã·½·¨»¹ÊÇÊʺÏÓÚ¼ÆËãÖ÷×åÔªËØÖ®¼äÐγɵϝºÏÎ¶øÇÒÕâЩÎïÖʳɼü±ØÐëÊÇÕý³£µÄ·½Ê½¡£ 2£®CVFF and CVFF auq

CVFFÊÇÒ»ÖÖµäÐ͵ĽÏÔçÓ¦ÓõķÖ×ÓÁ¦³¡Ëã·¨£¬ÔÚMSµÄDiscoverÄ£¿éÖÐÔÚ½øÐзÖ×Ó¶¯Á¦Ñ§Ä£ÄâʱĬÈϼÆËã·½·¨¾ÍÊÇCVFF£¬Õâ¸öËã·¨°üº¬Á˲¿·Ö·Ç¼òг×÷ÓÃÒÔ¼°ÄÜÁ¿ñîºÏ×÷ÓÃÏµ«²»ÊÇÈ«²¿¡£CVFFËã·¨Ó¦Óù㷺£¬Òò´ËÆä¼ÆËãÊǿɿ¿µÄ£¬Ö÷ÒªÓÃÓÚ¼ÆËã¶àëĺ͵°°×Öʽṹ¡£CVFF auqÊÇCVFFµÄÔöÇ¿°æ±¾£¬Ôö¼ÓÁ˷Ǽü

27

CASTEP¼ÆËãÔ­Àí---------XBAPRS

½áºÏµÄУÕý£¬¼ÆË㷶ΧҲÀ©´óµ½¹èËáÑΣ¬ÂÁ¹èËáÑκÍÕ³ÍÁµÈ¡£ 3£®Dreiding

ÕâÊÇÒ»Àà±È½ÏÌØÊâµÄ·Ö×ÓÁ¦³¡¼ÆËã·½·¨£¬ÊÊÓ÷¶Î§Ò²ºÜ¹ã£¬¿ÉÓÃÓÚ¼ÆËãÓлú´ó·Ö×Ó£¬¸÷ÖÖÓлú»¯ºÏÎïÒÔ¼°ÓÉÖ÷×åÔªËØ¹¹³ÉµÄÎÞ»ú»¯ºÏÎͬʱ»¹ÓÐÒ»¸öÌØµã¾ÍÊÇ¿ÉÒÔ¼ÆËãһЩȱ·¦ÊµÑéÊý¾ÝµÄнṹ»¯ºÏÎ°üÀ¨³É¼üÌØÊâµÄÎïÖÊ£¬µ«±ØÐëÊÇÒÔÉÏÎïÖÊ·¶Î§Äڵġ£ 4£® Universal

ÊÊÓ÷¶Î§×î¹ã·ºµÄ¼ÆËã·½·¨£¬¶ÔÔªËØÖÜÆÚ±íÄÚµÄËùÓÐÔªËØÊÊÓã¬Òò´ËÒ»°ã½á¹¹¶¼¿ÉÒÔ²ÉÓÃÕâ¸öËã·¨¡£

28