材料力学性能考前复习资料 下载本文

因为σ/σ0.2=900/1200=0.75>0.7,所以裂纹断裂韧度KIC需要修正 对于无限板的中心穿透裂纹,修正后的KI为:

KI???a900?3.14?0.01??168MPa?m1/21?0.177(?/?s)21?0.177(0.75)221塑性区宽度R0?22?1/2

?KI????????2.16mm?s?

因为KI=168.13(MPa*m)

1/2

KIc=115(MPa*m)

所以:KI>KIc,裂纹会失稳扩展 , 所以该件不安全。

十、有一轴件平行轴向工作应力150MPa,使用中发现横向疲劳脆性正断,断口分析表明有25mm深度的表面半椭圆疲劳区,根据裂纹a/c可以确定υ=1,测试材料的σ0.2=720MPa ,试估算材料的断裂韧度KIC为多少?

解:因为σ/σ0.2=150/720=0.208<0.7,所以裂纹断裂韧度KIC不需要修正

1/2

KIC=Yσcac

对于表面半椭圆裂纹,Y=1.1π/υ=1.1π 所以,KIC=Yσcac=1.1

1/2十一、设有屈服强度为415 MPa,断裂韧性为132 MPa.m ,宽度分别100mm、260 mm的两块合金厚钢板。如果板都受400 MPa的拉应力作用,并设板内都有长为46mm的中心穿透裂1/2

??150?25?10?3=46.229(MPa*m1/2)

aK????af()b)纹。应力场强度因子表达式为 , 已知f(0.46)=1.18,f(0.18)=1.02。 试问此两板内裂纹是否都扩展? ?400??0.96>0.7?4150.2 解:由于,故需要对KI进行修正。修正后的KI表达式为: KI?af() b1?0.177(?/?s)2?46?f???1.02260??,代入上式, ??a??46?f???1.18100? 窄板?,宽板2a可得: KI窄=138.3MPa>KIC,KI宽=119.5MPa<KIC,因此,窄板内的裂纹会扩展,

宽板内的裂纹不会扩展。

第五章 金属的疲劳

一、名词解释;

1.应力幅σa:σa=1/2(σmax-σmin) p95/p108 2.平均应力σm:σm=1/2(σmax+σmin) p95/p107 3.应力比r:r=σmin/σmax p95/p108

2b?4.疲劳源:是疲劳裂纹萌生的策源地,一般在机件表面常和缺口,裂纹,刀痕,蚀坑相连。P96

5.疲劳贝纹线:是疲劳区的最大特征,一般认为它是由载荷变动引起的,是裂纹前沿线留下的弧状台阶痕迹。 P97/p110

6.疲劳条带:疲劳裂纹扩展的第二阶段的断口特征是具有略呈弯曲并相互平行的沟槽花样,称为疲劳条带(疲劳辉纹,疲劳条纹) p113/p132 7.驻留滑移带:用电解抛光的方法很难将已产生的表面循环滑移带去除,当对试样重新循环加载时,则循环滑移带又会在原处再现,这种永留或再现的循环滑移带称为驻留滑移带。 P111

8.ΔK:材料的疲劳裂纹扩展速率不仅与应力水平有关,而且与当时的裂纹尺寸有关。ΔK是由应力范围Δσ和a复合为应力强度因子范围,ΔK=Kmax-Kmin=Yσmax√a-Yσmin√a=YΔσ√a. p105/p120

9.da/dN:疲劳裂纹扩展速率,即每循环一次裂纹扩展的距离。 P105

疲劳寿命:试样在交变循环应力或应变作用下直至发生破坏前所经受应力或应变的循环次数 p102/p117

10.过载损伤:金属在高于疲劳极限的应力水平下运转一定周次后,其疲劳极限或疲劳寿命减小,就造成了过载损伤。 P102/p117

疲劳:金属构件在变动载荷和应变长期作用下,由于累积损伤而引起的断裂现象称为疲劳。

二、揭示下列疲劳性能指标的意义

1.疲劳强度σ-1,σ-p,τ-1,σ-1N, P99,100,103/p114

σ-1: 对称应力循环作用下的弯曲疲劳极限;σ-p:对称拉压疲劳极限;τ-1:对称扭转疲劳极限;σ-1N:缺口试样在对称应力循环作用下的疲劳极限。 2.疲劳缺口敏感度qf P103/p118

金属材料在交变载荷作用下的缺口敏感性,常用疲劳缺口敏感度来评定。qf=(Kf-1)/(kt-1).其中Kt为理论应力集中系数且大于1,Kf为疲劳缺口系数。 Kf=(σ-1)/(σ-1N) 3.过载损伤界 P102,103/p117

由实验测定,测出不同过载应力水平和相应的开始降低疲劳寿命的应力循环周次,得到不同试验点,连接各点便得到过载损伤界。 4.疲劳门槛值ΔKth P105/p120

把裂纹扩展的每一微小过程看成是裂纹体小区域的断裂过程,则设想应力强度因子幅度△K=Kmax-Kmin是疲劳裂纹扩展的控制因子,当△K小于某临界值△Kth时,疲劳裂纹不扩展,所以△Kth叫疲劳裂纹扩展的门槛值。

三、试述金属疲劳断裂的特点 p96/p109

(1)疲劳是低应力循环延时断裂,即具有寿命的断裂 (2)疲劳是脆性断裂

(3)疲劳对缺陷(缺口,裂纹及组织缺陷)十分敏感

四、试述疲劳宏观断口的特征及其形成过程(新书P96~98及PPT,旧书P109~111) 答:典型疲劳断口具有三个形貌不同的区域—疲劳源、疲劳区及瞬断区。

(1) 疲劳源是疲劳裂纹萌生的策源地,疲劳源区的光亮度最大,因为这里在整个裂纹亚

稳扩展过程中断面不断摩擦挤压,故显示光亮平滑,另疲劳源的贝纹线细小。

(2) 疲劳区的疲劳裂纹亚稳扩展所形成的断口区域,是判断疲劳断裂的重要特征证据。

特征是:断口比较光滑并分布有贝纹线。断口光滑是疲劳源区域的延续,但其程度

随裂纹向前扩展逐渐减弱。贝纹线是由载荷变动引起的,如机器运转时的开动与停歇,偶然过载引起的载荷变动,使裂纹前沿线留下了弧状台阶痕迹。

(3) 瞬断区是裂纹最后失稳快速扩展所形成的断口区域。其断口比疲劳区粗糙,脆性材

料为结晶状断口,韧性材料为纤维状断口。

五、试述影响疲劳裂纹扩展速率的主要因素。(新书P107~109,旧书P123~125)

dac(?K)n答:1、应力比r(或平均应力?m)的影响:Forman提出: ?dN(1?r)Kc??K残余压应力因会减小r,使r,使

da降低和?Kth升高,对疲劳寿命有利;而残余拉应力因会增大dNda升高和?Kth降低,对疲劳寿命不利。 dN2、过载峰的影响:偶然过载进入过载损伤区内,使材料受到损伤并降低疲劳寿命。但若过载适当,有时反而是有益的。

3、材料组织的影响:①晶粒大小:晶粒越粗大,其?Kth值越高,

da越低,对疲劳寿命越dN有利。②组织:钢的含碳量越低,铁素体含量越多时,其?Kth值就越高。当钢的淬火组织中存在一定量的残余奥氏体和贝氏体等韧性组织时,可以提高钢的?Kth,降低丸处理:喷丸强化也能提高?Kth。

六、试述疲劳微观断口的主要特征。(新书P113~P114,旧书P132) 答:断口特征是具有略呈弯曲并相互平行的沟槽花样,称疲劳条带(疲劳条纹、疲劳辉纹)。疲劳条带是疲劳断口最典型的微观特征。滑移系多的面心立方金属,其疲劳条带明显;滑移系少或组织复杂的金属,其疲劳条带短窄而紊乱。

七、试述金属表面强化对疲劳强度的影响。(新书P117~P118,旧书P135~P136) 答:表面强化处理可在机件表面产生有利的残余压应力,同时还能提高机件表面的强度和硬度。这两方面的作用都能提高疲劳强度。

表面强化方法,通常有表面喷丸、滚压、表面淬火及表面化学热处理等。 (1) 表面喷丸及滚压

喷丸是用压缩空气将坚硬的小弹丸高速喷打向机件表面,使机件表面产生局部形变硬化;同时因塑变层周围的弹性约束,又在塑变层内产生残余压应力。

表面滚压和喷丸的作用相似,只是其压应力层深度较大,很适于大工件;而且表面粗糙度低,强化效果更好。

(2) 表面热处理及化学热处理

他们除能使机件获得表硬心韧的综合力学性能外,还可以利用表面组织相变及组织应力、热应力变化,使机件表面层获得高强度和残余压应力,更有效地提高机件疲劳强度和疲劳寿命。

第六章金属的应力腐蚀和氢脆断裂

一、名词解释

1、应力腐蚀断裂:金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的

da。③喷dN低应力脆断现象。

2、氢脆:由于氢和应力共同作用而导致的金属材料产生脆性断裂的现象。

3、白点:当钢中含有过量的氢时,随着温度降低氢在钢中的溶解度减小。如果过饱和的氢未能扩散逸出,便聚集在某些缺陷处而形成氢分子。此时,氢的体积发生急剧膨胀,内压力很大足以将金属局部撕裂,而形成微裂纹。

4、氢化物致脆:对于ⅣB 或ⅤB 族金属,由于它们与氢有较大的亲和力,极易生成脆性氢化物,使金属脆化,这种现象称氢化物致脆。

5、氢致延滞断裂:这种由于氢的作用而产生的延滞断裂现象称为氢致延滞断裂。 6、腐蚀疲劳:材料或零件在交变应力和腐蚀介质的共同作用下造成的失效。 二、说明下列力学性能指标的意义

1、σscc:材料不发生应力腐蚀的临界应力。 2、KIscc:应力腐蚀临界应力场强度因子。 3、da/dt:应力腐蚀裂纹扩展速率。 三、如何识别氢脆与应力腐蚀?

答:氢脆和应力腐蚀相比,其特点表现在:

1、实验室中识别氢脆与应力腐蚀的一种办法是,当施加一小的阳极电流,如使开裂加速,则为应力腐蚀;而当施加一小的阴极电流,使开裂加速者则为氢脆。

2、在强度较低的材料中,或者虽为高强度材料但受力不大,存在的残余拉应力也较小这时其断裂源都不在表面,而是在表面以下的某一深度,此处三向拉应力最大,氢浓集在这里造成氢脆断裂。

3、氢脆断裂的主裂纹没有分枝的情况.这和应力腐蚀的裂纹是截然不同的。 4、氢脆断口上一般没有腐蚀产物或者其量极微。 5、大多数的氢脆断裂(氢化物的氢脆除外),都表现出对温度和形变速率有强烈的依赖关系。氢脆只在一定的温度范围内出现,出现氢脆的温度区间决定于合金的化学成分和形变速率。 四、何谓氢致延滞断裂?为什么高强度钢的氢致延滞断裂是在一定的应变速率下和一定的温度范围内出现?

答:高强度钢中固溶一定量的氢,在低于屈服强度的应力持续作用下,经过一段孕育期后,金属内部形成裂纹,发生断裂。----氢致延滞断裂。 因为氢致延滞断裂的机理主要是氢固溶于金属晶格中,产生晶格膨胀畸变,与刃位错交互作用,氢易迁移到位错拉应力处,形成氢气团。

当应变速率较低而温度较高时,氢气团能跟得上位错运动,但滞后位错一定距离。因此,气团对位错起“钉扎”作用,产生局部硬化。当位错运动受阻,产生位错塞积,氢气团易于在塞积处聚集,产生应力集中,导致微裂纹。

若应变速率过高以及温度低的情况下,氢气团不能跟上位错运动,便不能产生“钉扎”作用,也不可能在位错塞积处聚集,不能产生应力集中,不会导致微裂纹。 所以氢致延滞断裂是在一定的应变速率下和一定的温度范围内出现的。 五、如何判断某一零件的破坏是由应力腐蚀引起的? 答案:应力腐蚀引起的破坏,常有以下特点:

1、造成应力腐蚀破坏的是静应力,远低于材料的屈服强度,而且一般是拉伸应力。 2、应力腐蚀造成的破坏,是脆性断裂,没有明显的塑性变形。

3、只有在特定的合金成分与特定的介质相组合时才会造成应力腐蚀。

4、应力腐蚀的裂纹扩展速率一般在10-9—10-6m/s,有点象疲劳,是渐进缓慢的,这种亚临界的扩展状况一直达到某一临界尺寸,使剩余下的断面不能承受外载时,就突然发生断裂。