(Ⅱ)An?11111111???...? ????...?2?33?4n(n?1)S1S2S3Sn1?2aaaa22222121 ??a1?2a2?3?21?a3?4?2121?(1?)
an(n?1)an?111?()n111112?2(1?1)因为a2n?2na,所以Bn??????...?a2na1a2a22a2n?1a1?1
2112012n当n?2时,2?Cn?Cn?Cn??Cn?n?1即1??1?n;
n?12
所以当a?0时,An?Bn;当a?0时,An?Bn .
12.(2017年高考安徽卷理科18)(本小题满分13分)
在数1和100之间插入n个实数,使得这n?2个数构成递增的等比数列,将这n?2个数的乘积记作Tn,再令an?lgTn,n≥1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn?tanan?tanan?1,求数列{bn}的前n项和Sn.
(Ⅱ)由(Ⅰ)知bn?tanan?tanan?1?tan(n?2)?tan(n?3),n?1
又
tan[(n?3)?tan(n?2)]?tan(n?3)?tan(n?2)?tan1
1?tan(n?2)?tan(n?3)?tan(n?2)?tan(n?3)?tan(n?3)?tan(n?2)?1
tan1所以数列{bn}的前n项和为
Sn?tan(1?2)?tan(1?3)?tan(2?2)?tan(2?3)?……?tan(n?2)?tan(n?3)tan(1?3)?tan(1?2)tan(2?3)?tan(2?2)tan(n?3)?tan(n?2)??……??ntan1tan1tan1tan(n?2)?tan3??ntan1?13. (2017年高考天津卷理科20)(本小题满分14分) 已知数列{an}与{bn}满足:bnan?an?1?bn?1an?23?(?1)n*?0,bn?, n?N,且
2a1?2,a2?4.
(Ⅰ)求a3,a4,a5的值;
*(Ⅱ)设cn?a2n?1?a2n?1,n?N,证明:?cn?是等比数列;
(Ⅲ)设Sk?a2?a4?????a2k,k?N,证明:
*Sk7?(n?N*). ?6k?1ak4n【解析】本小题主要考查等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析能力和解决问题的能力及分类讨论的思想方法.
?1,n是奇数3?(?1)n*(Ⅰ)解:由bn?,n?N,可得bn??, 又bnan?an?1?bn?1an?2?0,
2?2,n是偶数
当n=1时,a1?a2?2a3?0,由a1?2,a2?4,得a3??3;
当n=2时,2a2?a3?a4?0,可得a4??5. 当n=3时,a3?a4?2a5?0,可得a5?4.
k(III)证明:由(II)可得a2k?1?a2k?1?(?1),
于是,对任意k?N且k?2,有
*a1?a3??1,?(a3?a5)??1,a5?a7??1,(?1)k(a2k?3?a2k?1)??1.k将以上各式相加,得a1?(?1)a2k?1??(k?1), k?1即a2k?1?(?1)(k?1),
k?1此式当k=1时也成立.由④式得a2k?(?1)(k?3).
从而S2k?(a2?a4)?(a6?a8)??(a4k?2?a4k)??k,
S2k?1?S2k?a4k?k?3.
所以,对任意n?N,n?2,
*
nSkS4m?3S4m?2S4m?1S4m?(???) ??a4m?2a4m?1a4mk?1akm?1a4m?34n??(m?1nn2m?22m?12m?32m???) 2m2m?22m?12m?323?)
2m(2m?1)(2m?2)(2m?2)??(m?1n253???? 2?3m?22m(2m?1)(2n?2)(2n?3)1n53???? 3m?2(2m?1)(2m?1)(2n?2)(2n?3)151111???[(?)?(?)?323557?(113?)]? 2n?12n?1(2n?2)(2n?3)15513?????3622n?1(2n?2)(2n?3)
7?.6对于n=1,不等式显然成立. 所以,对任意n?N,
*S1S2??a1a2?(?S2n?1S2n? a2n?1a2n?(S2n?1S2n?) a2n?1a2nSSS1S2?)?(3?4)?a1a2a3a41112?(1??)?(1?2?2)?241244?(4?1)1112?n?(?)?(2?22)?41244(4?1)?(?(1?1n?) nn4(4?1)1n?) 4n4n(4n?1)111?n?(?)?n?.
412314. (2017年高考江西卷理科18)(本小题满分12分)
已知两个等比数列?an?,?bn?,满足a1?a(a?0),b1?a1?1,b2?a2?2,b3?a3?3.