练 习 题
1.已知a?t??at2?b,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
2.(1)假设A(t)=100+10t, 试确定i1,i3,i5。
(2)假设A?n??100??1.1?,试确定 i1,i3,i5 。
3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 i1?10%,第2年的利率为i2?8%,第3年的利率为 i3?6%,求该笔投资的原始金额。
5.确定10000元在第3年年末的积累值:
(1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。 6.设m>1,按从大到小的次序排列 v2?b2qx?e2px?与δ。 7.如果?t?0.01t,求10 000元在第12年年末的积累值。
8.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。
9.基金A以每月计息一次的年名义利率12%积累,基金B以利息强度?t?t6n积累,在时刻t (t=0),两笔基金存入的款项相同,试确定两基金金额相等的下一时刻。
10. 基金X中的投资以利息强度?t?0.01t?0.1(0≤t≤20), 基金Y中的投资以年实际利率i积累;现分别投资1元,则基金X和基金Y在第20年年末的积累值相等,求第3年年末基金Y的积累值。
11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。
A. 7.19 B. 4.04 C. 3.31 D. 5.21
12.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。 A.7 225 B.7 213 C.7 136 D.6 987
第二章:年金 练习题
1.证明vn?vm?i?am?an?。
2.某人购买一处住宅,价值16万元,首期付款额为A,余下的部分自下月起每月月初付1000元,共付10年。年计息12次的年名义利率为8.7% 。计算购房首期付款额A。
3. 已知a7?5.153 , a11?7.036, a18?9.180, 计算 i。
4.某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。年利率为10%,计算其每年生活费用。
5.年金A的给付情况是:1~10年,每年年末给付1000元;11~20年,每年年末给付2000元;21~30年,每年年末给付1000元。年金B在1~10年,每年给付额为K元;11~20年给付额为0;21~30年,每年年末给付K元,若A与B的现值相等,已知v10?1,计算K。 2 6. 化简a10?1?v10?v20? ,并解释该式意义。
7. 某人计划在第5年年末从银行取出17 000元,这5年中他每半年末在银行存入一笔款项,前5次存款每次为1000元,后5次存款每次为2000元,计算每年计息2次的年名义利率。
8. 某期初付年金每次付款额为1元,共付20次,第k年的实际利率为
1,计算V(2)。 8?k 9. 某人寿保险的死亡给付受益人为三个子女,给付形式为永续年金,前两个孩子第1到n年每年末平分所领取的年金,n年后所有的年金只支付给第三个孩子,若三个孩子所领取的年金现值相等,那么v=( )
?1? A. ?? B. 3n C.
?3?1n1?1?n?? D.3 ?3?2n 11. 延期5年连续变化的年金共付款6年,在时刻t时的年付款率为?t?1?,t时刻的利息强度为1/(1+t),该年金的现值为( ) A.52 B.54 C.56 D.58
第三章:生命表基础 练习题
1.给出生存函数s?x??e?x22500,求:
(1)人在50岁~60岁之间死亡的概率。 (2)50岁的人在60岁以前死亡的概率。 (3)人能活到70岁的概率。 (4)50岁的人能活到70岁的概率。
2. 已知Pr[5<T(60)≤6]=0.1895,Pr[T(60)>5]=0.92094,求q60。 3. 已知q80?0.07,d80?3129,求l81。
4. 设某群体的初始人数为3 000人,20年内的预期死亡人数为240人,第21年和第22年的死亡人数分别为15人和18人。求生存函数s(x)在20岁、21岁和22岁的值。 5. 如果?x?22?,0≤x≤100, 求l0=10 000时,在该生命表中1x?1100?x岁到4岁之间的死亡人数为( )。 A.2073.92 B.2081.61 C.2356.74 D.2107.56
6. 已知20岁的生存人数为1 000人,21岁的生存人数为998人,22岁的生存人数为992人,则1|q20为( )。 A. 0.008 B. 0.007 C. 0.006 D. 0.005
第四章:人寿保险的精算现值 练 习 题
1. 设生存函数为s?x??1?额为1元):
(1)趸缴纯保费ā1的值。 30:10 (2)这一保险给付额在签单时的现值随机变量Z的方差Var(Z)。
2. 设年龄为35岁的人,购买一张保险金额为1 000元的5年定期寿险保单,保险金于被保险人死亡的保单年度末给付,年利率i=0.06,试计算: (1)该保单的趸缴纯保费。
(2)该保单自35岁~39岁各年龄的自然保费之总额。 (3)(1)与(2)的结果为何不同?为什么?
3. 设Ax?0.25, Ax?20?0.40, Ax:20?0.55, 试计算: (1) A1 。 x:20 (2) Ax:1 。 10 4. 试证在UDD假设条件下: (1) Ax:n?1x (0≤x≤100),年利率i=0.10,计算(保险金100i?A1x:n 。
iA1 。 x:n? (2) āx:n?Ax:1n? 5. (x)购买了一份2年定期寿险保险单,据保单规定,若(x)在保险期限内发生保险责任范围内的死亡,则在死亡年末可得保险金1元,
qx?0.5i,?0V,a?r?z? 6
0. 1,试求771qx?1。
A76?0.8,D76?400,D77?360,i?0.03,求A77 。
7. 现年30岁的人,付趸缴纯保费5 000元,购买一张20年定期寿险保单,保险金于被保险人死亡时所处保单年度末支付,试求该保单的保险金额。 8. 考虑在被保险人死亡时的那个
1年时段末给付1个单位的终身寿险,m1年的时段数。 m设k是自保单生效起存活的完整年数,j是死亡那年存活的完整