ÉúÃü´Í¸øÎÒÃÇ£¬ÎÒÃDZØÐë·îÏ×ÉúÃü£¬²ÅÄÜ»ñµÃÉúÃü¡£
Õâ¸önotes´¿´âÊÇɨäÓõġ£
ÎÒÓÃÁËÒ»¸ö×î¼òµ¥µÄÏßÐÔDSGE£¬Ö»ÓÐÁ½¸ö·½³Ì¡£ÏÈÊÇÎÒÓÃÊÖËãµÄ·½·¨ÕÒµ½saddle-path µÄpolicy function£¬È»ºóÊÖËã³öimpulse response function¡£ÕâЩÎÒ¶¼ÓÃDynare×öÁ˼ÆË㣬³ÌÐòºÍ½á¹û¶¼Ð´ÔÚnoteÀïÃæ¡£
ÉÏÃæÊÇÎÒnoteµÄ½ØÍ¼£¬Õâ¸öDSGEÄ£ÐÍʵ¼ÊÉϾÍÊÇÒ»¸ölinear rational expecation model (LREM)£¬µ«DSGEµÄÏßÐÔ»¯ºóµÄ±¾ÖÊÒ²¾ÍÊǸöLRE¡£ËäÈ»Õâ¸önoteÌṩµÄÄ£Ðͷdz£¼òµ¥£¬µ«ÊÇ˼·ÔÚÓÚÈçºÎÓÃDynareÀ´ÉîÈëѧϰÕâ¸ö¶¯Ì¬ÏµÍ³¡£Óм¸¸öÊÂÇéÐèÒª´ó¼Ò×Ô¼ºÀ´×ö£º
1. betaºÍrhoµÄ´óС£¬´ó¼Ò´Ó»»ºÜ¶à´Îcalibration£¬¿´ÄܶÔIRF´øÀ´Ê²Ã´Ó°Ïì? 2. betaºÍrho¶¼´óÓÚ1µÄʱºò£¬ÄãÓ¦¸ÃÔõôÐÞ¸ÄÄ£ÐÍ£¬ÎªÁËά³ÖÄ£Ð͵ÄÎȶ¨ÐÔ£¿ 3. ¿´ÐÞ¸ÄshockµÄstardard deviationÄܶÔÄ£ÐÍ´øÁËʲôӰÏ죿 4. Èç¹ûÄãÔÙ¼ÓÒ»¸ö·½³Ì½øÈ¥ÄØ£¿Ê²Ã´Ñù×ӵķ½³Ì£¿
ÒÔÉÏÄÚÈÝÎÒ¶¼ÊÔÑé¹ýÁË¡£Õâ¸ö¶«Î÷û·¨°ï´ó¼ÒÊÔÑ飬ËùÒÔ´ó¼Ò±ØÐë×Ô¼ºÊÔ×Å×ö¡£ÕâÑùÄã¿ÉÒÔѧµ½ºÜ¶à¹ØÓÚ¶¯Ì¬ÏµÍ³µÄ¸ÐÐÔÈÏʶ¡£
Ö®ºó£¬ÎÒÓÃ×î´óËÆÈ»¹À¼Æ¶Ô²ÎÊý¹À¼Æ£¬È»ºóÎÒ¹ÊÒâÖÆÔìunder-identificationµÄÎÊÌ⣬Èôó¼Ò¿´Ò»Ï½á¹ûÊÇʲôÑù×Ó¡£×îºó¾ÍÊÇBayesian estimation£¬ÎÒÖ»¹À¼ÆÁË1¸ö²ÎÊý£¬ÓÃÁË2ÌõƽÐÐÂí¶û¿Æ·òÁ´£¬×öÁ˳¬³¬¶Ì³ÌÄ£Ä⣨ֻÓÐ500´Î£¬Õý³£Çé¿ö¶¼ÊÇ100000£©£¬ÎªÁËʡʱ¼ä(ÎÒµçÄÔÖ»ÓÃ50Ãë×óÓÒ)£¬ËùÒÔÎÒ²¢Ã»ÓÐÈõçÄÔÅܺܳ¤µÄÂí¶û¿Æ·òÁ´ºÍ¶à¸öƽÐÐÁ´Ìõ¡£ËùÒÔ½á¹û·Ç³£²î£¬µ«ÊÇÕâ²»ÊǵÄÄ¿µÄ¡£Ä¿µÄ»¹ÊÇÔÚÓÚÈôÓÀ´Ã»¼û¹ýÕû¸ö¹À¼Æ¹ý³ÌµÄͬѧ¿´µ½Ò»¸öȫò¡£ËùÒÔÎÒûÓÐÌá¼°ÀíÂÛÄÚÈÝ£¬»òÕßÊÇÒ»´ø¶ø¹ý¡£
¶ÔÓÚBayesian estimation£¬ÓиöµØ·½Òª×¢ÒâµÄ¾ÍÊÇshockµÄ¸öÊý±ØÐë´óÓÚµÈobservableµÄ¸öÊý£¬ÕâÊÇÆô¶¯Kalman filterÄ£Äâlikelihood functionµÄ³ä·ÖÌõ¼þ¡£Kalman filterÊÇÒ»¸ö¼«Æä¸´ÔÓµÄËã·¨£¬¼ÆÁ¿¾¼ÃѧÉÏÃæÓÃÀ´Ä£Äâlikelihood function¡£ÒÔºóÎÒ»áÓÐÒ»¸öÌù×ÓרÃÅÀ´Õ¹¿ªKalman filterµÄÄÚ²¿½á¹¹¡£ notesÏÂÔØ Ï£ÍûÊDZ¾ÎÞËùνÓУ¬ÎÞËùνÎ޵ġ£ÕâÕýÈçµØÉϵÄ·£»ÆäʵµØÉϱ¾Ã»Óз£¬×ßµÄÈ˶àÁË£¬Ò²±ã³ÉÁË·¡£
ÉúÃü´Í¸øÎÒÃÇ£¬ÎÒÃDZØÐë·îÏ×ÉúÃü£¬²ÅÄÜ»ñµÃÉúÃü¡£
Simplest DSGE.pdf (257.99 KB)
¹ØÓÚÄ£Ð;ßÌåÍÆµ¼ºÍÄ£ÄâµÄÀý×Ó£¬Çë¿´µÚÁù¸öÌû×Ó DSGEÄ£ÐÍÌÖÂÛÖ®Áù¡ª¡ªÐ¹ŵäÔö³¤Ä£ÐÍ£¨ÈëÃż¶DSGE£©µÄÍÆµ¼ºÍDynareÄ£”M ¹ØÓÚÄ£ÐÍÇó½â·½·¨£¬±ÈÈçBlanchard-Khan£¬Uhlig ·½·¨£¬¿´µÚÈý¸öÌû×Ó DSGEÄ£ÐÍÌÖÂÛÖ®Èý¡ª¡ªÏßÐÎÀíÐÔÔ¤ÆÚÄ£ÐÍ(Linear rational expectation model) Èç¹ûÄãÁ¬DSGEÊÇʲô¶¼²»ÖªµÀ£¬¿´ Õë¶ÔDSGEÄ£ÐÍѧϰµÄ½¨ÒéÐԼƻ®£¨Ô´´£©¹ØÓÚDSGEÇó½âºÍÄ£ÐͲÎÊý¹À¼ÆµÄһЩÈÏʶ(Ô´´)
>> dynare simplemodel
Configuring Dynare ... [mex] Generalized QZ.
[mex] Sylvester equation solution. [mex] Kronecker products.
[mex] Sparse kronecker products.
[mex] Local state space iteration (second order). [mex] Bytecode evaluation.
[mex] k-order perturbation solver. [mex] k-order solution simulation.
[mex] Quasi Monte-Carlo sequence (Sobol). [mex] Markov Switching SBVAR.
Starting Dynare (version 4.3.3).
Starting preprocessing of the model file ... Found 2 equation(s).
Evaluating expressions...done
Computing static model derivatives: - order 1
Computing dynamic model derivatives: - order 1
Processing outputs ...done Preprocessing completed.
Starting MATLAB/Octave computing.
STEADY-STATE RESULTS:
Ï£ÍûÊDZ¾ÎÞËùνÓУ¬ÎÞËùνÎ޵ġ£ÕâÕýÈçµØÉϵÄ·£»ÆäʵµØÉϱ¾Ã»Óз£¬×ßµÄÈ˶àÁË£¬Ò²±ã³ÉÁË·¡£
ÉúÃü´Í¸øÎÒÃÇ£¬ÎÒÃDZØÐë·îÏ×ÉúÃü£¬²ÅÄÜ»ñµÃÉúÃü¡£
x 0 y 0
EIGENVALUES:
Modulus Real Imaginary
0.9 0.9 0 1.111 1.111 0
There are 1 eigenvalue(s) larger than 1 in modulus for 1 forward-looking variable(s)
The rank condition is verified.
Residuals of the static equations:
Equation number 1 : 0 Equation number 2 : 0
MODEL SUMMARY
Number of variables: 2 Number of stochastic shocks: 2 Number of state variables: 1 Number of jumpers: 1 Number of static variables: 0
MATRIX OF COVARIANCE OF EXOGENOUS SHOCKS
Variables e u e 0.010000 0.000000 u 0.000000 0.010000
POLICY AND TRANSITION FUNCTIONS
y x
Ï£ÍûÊDZ¾ÎÞËùνÓУ¬ÎÞËùνÎ޵ġ£ÕâÕýÈçµØÉϵÄ·£»ÆäʵµØÉϱ¾Ã»Óз£¬×ßµÄÈ˶àÁË£¬Ò²±ã³ÉÁË·¡£
ÉúÃü´Í¸øÎÒÃÇ£¬ÎÒÃDZØÐë·îÏ×ÉúÃü£¬²ÅÄÜ»ñµÃÉúÃü¡£
x(-1) 4.736842 0.900000 e 5.263158 1.000000 u 1.000000 0
MOMENTS OF SIMULATED VARIABLES
VARIABLE MEAN STD. DEV. VARIANCE SKEWNESS KURTOSIS y -0.347966 1.279206 1.636369 -0.076629 0.045543 x -0.065640 0.242347 0.058732 -0.091698 0.036069
CORRELATION OF SIMULATED VARIABLES
VARIABLE y x y 1.0000 0.9970 x 0.9970 1.0000
AUTOCORRELATION OF SIMULATED VARIABLES
VARIABLE 1 2 3 4 5 y 0.9127 0.8244 0.7364 0.6581 0.5958 x 0.9163 0.8295 0.7426 0.6692 0.6119 Loading 900 observations from Simul_data.mat
Initial value of the log posterior (or likelihood): -14016.6527
Warning: Options LargeScale = 'off' and Algorithm = 'trust-region-reflective' conflict. Ignoring Algorithm and running active-set algorithm. To run trust-region-reflective, set LargeScale = 'on'. To run active-set without this warning, use Algorithm = 'active-set'. > In fmincon at 454
In dynare_estimation_1 at 228 In dynare_estimation at 70 In simplemodel at 129 In dynare at 120
Warning: Your current settings will run a different algorithm (interior-point) in a future release. > In fmincon at 458
In dynare_estimation_1 at 228 In dynare_estimation at 70 In simplemodel at 129 In dynare at 120
Max Line search Directional First-order Iter F-count f(x) constraint steplength derivative optimality Procedure Ï£ÍûÊDZ¾ÎÞËùνÓУ¬ÎÞËùνÎ޵ġ£ÕâÕýÈçµØÉϵÄ·£»ÆäʵµØÉϱ¾Ã»Óз£¬×ßµÄÈ˶àÁË£¬Ò²±ã³ÉÁË·¡£
ÉúÃü´Í¸øÎÒÃÇ£¬ÎÒÃDZØÐë·îÏ×ÉúÃü£¬²ÅÄÜ»ñµÃÉúÃü¡£
0 3 14016.7 -0.19 1 7 -1447.33 -0.095 0.5 -1.1e+05 5.09e+04 2 13 -1577.29 -0.08313 0.125 -2.88e+04 8.91e+03 3 17 -1579.48 -0.04156 0.5 -244 4.29e+03 4 22 -1587.63 -0.07759 0.25 -341 1.9e+03 5 29 -1588.01 -0.07479 0.0625 -293 56.2 6 32 -1588.68 -0.08274 1 -76.1 390 7 35 -1589.03 -0.08502 1 -48.8 980 8 38 -1589.17 -0.08623 1 -140 110 9 41 -1589.19 -0.08436 1 -11.3 17.6 10 44 -1589.19 -0.08348 1 -3.35 8.1 11 47 -1589.19 -0.08345 1 -0.72 0.0422
Local minimum possible. Constraints satisfied.
fmincon stopped because the size of the current search direction is less than twice the selected value of the step size tolerance and constraints are satisfied to within the default value of the constraint tolerance.
No active inequalities.
POSTERIOR KERNEL OPTIMIZATION PROBLEM!
(minus) the hessian matrix at the \=> posterior variance of the estimated parameters are not positive. You should try to change the initial values of the parameters using the estimated_params_init block, or use another optimization routine. Warning: The results below are most likely wrong! > In dynare_estimation_1 at 480 In dynare_estimation at 70 In simplemodel at 129 In dynare at 120
MODE CHECK
Fval obtained by the minimization routine: -1589.188769
RESULTS FROM MAXIMUM LIKELIHOOD parameters
Estimate s.d. t-stat
beta 0.8935 0.0000 0.0000
Ï£ÍûÊDZ¾ÎÞËùνÓУ¬ÎÞËùνÎ޵ġ£ÕâÕýÈçµØÉϵÄ·£»ÆäʵµØÉϱ¾Ã»Óз£¬×ßµÄÈ˶àÁË£¬Ò²±ã³ÉÁË·¡£
ÉúÃü´Í¸øÎÒÃÇ£¬ÎÒÃDZØÐë·îÏ×ÉúÃü£¬²ÅÄÜ»ñµÃÉúÃü¡£ rho 0.9065 0.0000 0.0000 Total computing time : 0h00m07s
Ï£ÍûÊDZ¾ÎÞËùνÓУ¬ÎÞËùνÎ޵ġ£ÕâÕýÈçµØÉϵÄ·£»ÆäʵµØÉϱ¾Ã»Óз£¬×ßµÄÈ˶àÁË£¬Ò²±ã³ÉÁË·¡£