2016年全国统一高考数学试卷文科新课标(Word版下载) 下载本文

7.(5分)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )

A.20π B.24π C.28π D.32π

【分析】空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2

,在轴截面中圆锥的母线长使用勾股定理做出的,写出表面积,下

面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,做出圆柱的表面积,注意不包括重合的平面.

【解答】解:由三视图知,空间几何体是一个组合体, 上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2∴在轴截面中圆锥的母线长是∴圆锥的侧面积是π×2×4=8π,

下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4, ∴圆柱表现出来的表面积是π×22+2π×2×4=20π ∴空间组合体的表面积是28π, 故选:C.

【点评】本题考查由三视图求表面积,本题的图形结构比较简单,易错点可能是两个几何体重叠的部分忘记去掉,求表面积就有这样的弊端.

8.(5分)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.

B. C. D.

=4,

【分析】求出一名行人前25秒来到该路口遇到红灯,即可求出至少需要等待15

第9页(共25页)

秒才出现绿灯的概率.

【解答】解:∵红灯持续时间为40秒,至少需要等待15秒才出现绿灯, ∴一名行人前25秒来到该路口遇到红灯, ∴至少需要等待15秒才出现绿灯的概率为故选:B.

【点评】本题考查概率的计算,考查几何概型,考查学生的计算能力,比较基础.

9.(5分)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=( )

=.

A.7 B.12 C.17 D.34

【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案. 【解答】解:∵输入的x=2,n=2,

当输入的a为2时,S=2,k=1,不满足退出循环的条件; 当再次输入的a为2时,S=6,k=2,不满足退出循环的条件; 当输入的a为5时,S=17,k=3,满足退出循环的条件; 故输出的S值为17,

第10页(共25页)

故选:C.

【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.

10.(5分)下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是( ) A.y=x B.y=lgx

C.y=2x D.y=

【分析】分别求出各个函数的定义域和值域,比较后可得答案. 【解答】解:函数y=10lgx的定义域和值域均为(0,+∞), 函数y=x的定义域和值域均为R,不满足要求;

函数y=lgx的定义域为(0,+∞),值域为R,不满足要求; 函数y=2x的定义域为R,值域为(0,+∞),不满足要求; 函数y=

的定义域和值域均为(0,+∞),满足要求;

故选:D.

【点评】本题考查的知识点是函数的定义域和值域,熟练掌握各种基本初等函数的定义域和值域,是解答的关键.

11.(5分)函数f(x)=cos2x+6cos(A.4

B.5

C.6

D.7

﹣x)的最大值为( )

【分析】运用二倍角的余弦公式和诱导公式,可得y=1﹣2sin2x+6sinx,令t=sinx(﹣1≤t≤1),可得函数y=﹣2t2+6t+1,配方,结合二次函数的最值的求法,以及正弦函数的值域即可得到所求最大值. 【解答】解:函数f(x)=cos2x+6cos(=1﹣2sin2x+6sinx, 令t=sinx(﹣1≤t≤1), 可得函数y=﹣2t2+6t+1 =﹣2(t﹣)2+

﹣x)

第11页(共25页)

由?[﹣1,1],可得函数在[﹣1,1]递增, 即有t=1即x=2kπ+故选:B.

【点评】本题考查三角函数的最值的求法,注意运用二倍角公式和诱导公式,同时考查可化为二次函数的最值的求法,属于中档题.

12.(5分)已知函数f(x)(x∈R)满足f(x)=f(2﹣x),若函数y=|x2﹣2x﹣3|与 y=f(x) 图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则A.0

B.m C.2m D.4m

xi=( )

,k∈Z时,函数取得最大值5.

【分析】根据已知中函数函数f(x)(x∈R)满足f(x)=f(2﹣x),分析函数的对称性,可得函数y=|x2﹣2x﹣3|与 y=f(x) 图象的交点关于直线x=1对称,进而得到答案.

【解答】解:∵函数f(x)(x∈R)满足f(x)=f(2﹣x), 故函数f(x)的图象关于直线x=1对称, 函数y=|x2﹣2x﹣3|的图象也关于直线x=1对称,

故函数y=|x2﹣2x﹣3|与 y=f(x) 图象的交点也关于直线x=1对称, 故

xi=×2=m,

故选:B.

【点评】本题考查的知识点是二次函数的图象和性质,函数的对称性质,难度中档.

二、填空题:本题共4小题,每小题5分.

13.(5分)已知向量=(m,4),=(3,﹣2),且∥,则m= ﹣6 . 【分析】直接利用向量共线的充要条件列出方程求解即可. 【解答】解:向量=(m,4),=(3,﹣2),且∥, 可得12=﹣2m,解得m=﹣6.

第12页(共25页)