固定效应模型的估计原理说明 - 图文 下载本文

固定效应模型的估计原理说明

在面板数据线性回归模型中,如果对于不同的截面或不同的时间序列,只是模型的截距项是不同的,而模型的斜率系数是相同的,则称此模型为固定效应模型。固定效应模型分为三类:

1.个体固定效应模型

个体固定效应模型是对于不同的纵剖面时间序列(个体)只有截距项不同的模型:

yit??i???kxkit?uit (1)

k?2K从时间和个体上看,面板数据回归模型的解释变量对被解释变量的边际影响均是相同的,而且除模型的解释变量之外,影响被解释变量的其他所有(未包括在回归模型或不可观测的)确定性变量的效应只是随个体变化而不随时间变化时。

检验:采用无约束模型和有约束模型的回归残差平方和之比构造F统计量,以检验设定个体固定效应模型的合理性。F模型的零假设:

H0:?1??2??3??????N?1?0

N?1?F(N?1,N(T?1)?K?1)

URSS(NT?N?K?1)(RRSS?URSS)F?RRSS是有约束模型(即混合数据回归模型)的残差平方和,URSS是无约束模型ANCOVA估计的残差平方和或者LSDV估计的残差平方和。

实践:

一、数据:已知1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(cp,不变价格)和人均收入(ip,不变价格)居民,利用数据(1)建立面板数据(panel data)工作文件;(2)定义序列名并输入数据;(3)估计选择面板模型;(4)面板单位根检验。年人均消费(consume)和人均收入(income)数据以及消费者价格指数(p)分别见表1,2和3。

表1 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(元)数据

人均消费 CONSUMEAH CONSUMEBJ CONSUMEFJ CONSUMEHB CONSUMEHLJ CONSUMEJL CONSUMEJS CONSUMEJX CONSUMELN CONSUMENMG

1996 1997 1998 1999 2000 2001 2002 3607.43 5729.52 4248.47 3424.35 3110.92 3037.32 4057.5 2942.11 3493.02 2767.84 3693.55 6531.81 4935.95 4003.71 3213.42 3408.03 4533.57 3199.61 3719.91 3032.3 3777.41 6970.83 5181.45 3834.43 3303.15 3449.74 4889.43 3266.81 3890.74 3105.74 1

3901.81 7498.48 5266.69 4026.3 3481.74 3661.68 5010.91 3482.33 3989.93 3468.99 4232.98 8493.49 5638.74 4348.47 3824.44 4020.87 5323.18 3623.56 4356.06 3927.75 4517.65 8922.72 6015.11 4479.75 4192.36 4337.22 5532.74 3894.51 4654.42 4195.62 4736.52 10284.6 6631.68 5069.28 4462.08 4973.88 6042.6 4549.32 5342.64 4859.88 CONSUMESD CONSUMESH CONSUMESX CONSUMETJ CONSUMEZJ 3770.99 6763.12 3035.59 4679.61 5764.27 4040.63 6819.94 3228.71 5204.15 6170.14 4143.96 6866.41 3267.7 5471.01 6217.93 4515.05 8247.69 3492.98 5851.53 6521.54 5022 8868.19 3941.87 6121.04 7020.22 5252.41 9336.1 4123.01 6987.22 7952.39 5596.32 10464 4710.96 7191.96 8713.08

表2 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均收入(元)数据

人均收入 INCOMEAH INCOMEBJ INCOMEFJ INCOMEHB INCOMEHLJ INCOMEJL INCOMEJS INCOMEJX INCOMELN INCOMENMG INCOMESD INCOMESH INCOMESX INCOMETJ INCOMEZJ 1996 1997 1998 1999 2000 2001 2002 4512.77 7332.01 5172.93 4442.81 3768.31 3805.53 5185.79 3780.2 4207.23 3431.81 4890.28 8178.48 3702.69 5967.71 6955.79 4599.27 7813.16 6143.64 4958.67 4090.72 4190.58 5765.2 4071.32 4518.1 3944.67 5190.79 8438.89 3989.92 6608.39 7358.72 4770.47 8471.98 6485.63 5084.64 4268.5 4206.64 6017.85 4251.42 4617.24 4353.02 5380.08 8773.1 4098.73 7110.54 7836.76 5064.6 9182.76 6859.81 5365.03 4595.14 4480.01 6538.2 4720.58 4898.61 4770.53 5808.96 10931.64 4342.61 7649.83 8427.95 5293.55 10349.69 7432.26 5661.16 4912.88 4810 6800.23 5103.58 5357.79 5129.05 6489.97 11718.01 4724.11 8140.5 9279.16 5668.8 11577.78 8313.08 5984.82 5425.87 5340.46 7375.1 5506.02 5797.01 5535.89 7101.08 12883.46 5391.05 8958.7 10464.67 6032.4 12463.92 9189.36 6679.68 6100.56 6260.16 8177.64 6335.64 6524.52 6051 7614.36 13249.8 6234.36 9337.56 11715.6

表3 1996—2002年中国东北、华北、华东15个省级地区的消费者物价指数 物价指数 PAH PBJ PFJ PHB PHLJ PJL PJS PJX PLN PNMG PSD PSH PSX PTJ PZJ 1996 1997 1998 1999 2000 2001 2002 109.9 111.6 105.9 107.1 107.1 107.2 109.3 108.4 107.9 107.6 109.6 109.2 107.9 109 107.9 101.3 105.3 101.7 103.5 104.4 103.7 101.7 102 103.1 104.5 102.8 102.8 103.1 103.1 102.8 100 102.4 99.7 98.4 100.4 99.2 99.4 101 99.3 99.3 99.4 100 98.6 99.5 99.7 97.8 100.6 99.1 98.1 96.8 98 98.7 98.6 98.6 99.8 99.3 101.5 99.6 98.9 98.8 100.7 103.5 102.1 99.7 98.3 98.6 100.1 100.3 99.9 101.3 100.2 102.5 103.9 99.6 101 100.5 103.1 98.7 100.5 100.8 101.3 100.8 99.5 100 100.6 101.8 100 99.8 101.2 99.8 99 98.2 99.5 99 99.3 99.5 99.2 100.1 98.9 100.2 99.3 100.5 98.4 99.6 99.1 2

二、1.输入操作: 步骤:(1)File——New——Workfile

步骤:(2)Start date——End date——OK

步骤:(3)Object——New Object

步骤:(4)Type of object——Pool

3

步骤:(5)输入所有序列名称

步骤:(6)定义各变量点击sheet—输入consume?income?p?

4