...
¦Ð ¦Ð
ÒòΪ
[ , ] ÊǺ¯Êý y sin x µÄÔöÇø¼ä£¬ 2 2
¦Ð
ËùÒÔ 2m ¡Ü .
3 2 ¦Ð
ËùÒÔ m¡Ü .
12
ËùÒÔ m µÄ×î´óֵΪ
12
.
16£®£¨¹² 13 ·Ö£©
½â£º£¨¢ñ£©Éè¸ÃÉúÑ¡ÖÐÔÂÆ½¾ùÊÕÈëн×ʸßÓÚ
8500 ÔªµÄ³ÇÊÐΪʼþA.
8500 ÔªµÄÓÐ 6 ¸ö£¬
ÒòΪ 15 ×ù³ÇÊÐÖÐÔÂÆ½¾ùÊÕÈëн×ʸßÓÚ
2 ËùÒÔ
P(A) .
5
£¨¢ò£©ÓÉ£¨¢ñ£©ÖªÑ¡ÖÐÆ½¾ùн×ʸßÓÚ
8500 ÔªµÄ³ÇÊеĸÅÂÊΪ
2
3 £¬ £¬µÍÓÚ 8500 ÔªµÄ¸ÅÂÊΪ
5 5
2
ËùÒÔ X ~ B(2, ) .
5 3
9
2
P( X
0) ( ) £»
5 25 2 3 12 1
P( X 1) C
2
£»
5 5 25 2 4 2
2
P( X 2) C
2
( ) 5
25
.
ËùÒÔËæ»ú±äÁ¿ X µÄ·Ö²¼ÁÐΪ£º
P
0 1 2
25
ËùÒÔ X µÄÊýѧÆÚÍûΪ E(X ) 2
5
£¨¢ó£©
2 1
2
X
9
12
25 2
4 25
4 5
.
s s
2
.
2029.£¨¹² 14 ·Ö£©
½â£º£¨¢ñ£©ÒòΪ Æ½Ãæ ABCD
BC ËùÒÔ BC ÒòΪ AA1
ËùÒÔ BC
Æ½Ãæ ABB A £¬Æ½Ãæ ABCD
1 1
Æ½Ãæ ABCD £¬
Æ½Ãæ ABB1 A1 .
Æ½Ãæ
1
Æ½Ãæ ABB A
1 1
AB£¬ AB
BC £¬
ABBA£¬
1
1
AA .
£¨¢ò£©È¡ A1B1 µÄÖеã N £¬Á¬½áBN .
ƽÐÐËıßÐÎABB1A1 ÖÐ AB AA1 £¬ BAA1
ÓÉ£¨¢ñ£©Öª BC Æ½Ãæ ABB A .
1 1
60 .Ò×Ö¤BN A1B1 .
z
C
1
¹ÊÒÔΪ BԵ㣬 BA£¬BN£¬BC ËùÔÚÖ±ÏßÎª×ø±êÖᣬ
½¨Á¢ÈçͼËùʾ¿Õ¼äÖ±½Ç×ø±êϵB xyz.
C
D
D
1
...
...
ÒÀÌâÒ⣬ A(2,0,0), A (1, 3,0), D (1,0,1) £¬
1
M
B
1
ÉèÆ½Ãæ DAA1 µÄÒ»¸ö·¨ÏòÁ¿Îª n ( x, y, z) Ôò
x
B
A
1
N
y
A
AA1 ( 1£¬3£¬,0£©£¬ AD ( 1,0,1)
...
...
Ôò
n AA1 n AD
0
£¬ ¼´ 0
x
3y 0
£¬
x z 0
Áî y = 1£¬µÃ n = (
3,1, 3)£®
Ò×ÖªÆ½Ãæ ABB A µÄÒ»¸ö·¨ÏòÁ¿Îª m = (0,0,1) £¬
1 1
Éè¶þÃæ½Ç D AA1 B µÄÆ½Ãæ½ÇΪ ¦Á£¬¿ÉÖª
ΪÈñ½Ç£¬
Ôò
cos cos n,m
n m
21
3
n m
7
3 1 3
£®
21
£¬ 7
¼´¶þÃæ½Ç D AA1 B µÄÓàÏÒֵΪ
£¨¢ó£©½â£ºÉè DM
DB £¬
1 1
[0,1] £¬ M (x, y, z) £®
£¬ C (0,0,1) £¬
ÒòΪ D (1,0,1) £¬ B
( 1, 3,0)
( x 1,y,z 1)
.
ËùÒÔ DB1 ËùÒÔ x
( 2, 3, 1),DM
3 ,z 1 ) )
1 2 , y
M (1 2 , 3 ,1 CM (1 2 , 3 ,
ÒòΪ CM ¡Î Æ½Ãæ DAA
1
ËùÒÔ CM n = 0
¼´
3(1 2 ) 3 3
0£¬ËùÒÔ ¦Ë=
1
£® 2
DM
ËùÒÔ´æÔÚµã M £¬Ê¹µÃ CM¡Î Æ½Ãæ DAA1 £¬´Ëʱ
DB
1
1 £® 2
2030.£¨¹² 13 ·Ö£©
x
½â£º£¨¢ñ£©ÒòΪ a 0 £¬ x R ËùÒÔ f ( x) (x 2)e £¬
¹Ê f ( x) ( x 1)e £¬
x
Áî f ( x) 0£¬µÃ x 1 £¬ËùÒÔµ¥µ÷µÝÔöÇø¼äΪ Áî f ( x) 0£¬µÃ x 1 £¬ËùÒÔµ¥µ÷µÝÇø Ϊ¼ä
x
(1, (
) £»
,1) £®
£¨¢ò£©ÓÉÌâ¿ÉµÃ f (x) (x 1)(e ax) .
ax 0ºã³ÉÁ¢£¬
¢Ù µ± a ¡Ü 0 ʱ£¬¶ÔÈÎÒâx (0,+ ) £¬¶¼ÓÐ ex ËùÒÔµ± 0
x 1 ʱ£¬ f ( x) 0 £»µ± x 1 ʱ£¬ f ( x) 0 .
ËùÒÔº¯Êý f (x) ÔÚ x 1 ´¦È¡µÃ¼«Ð¡Öµ£¬·ûºÏÌâÒâ.
x
¢Ú µ± 0 a ¡Ü eʱ£¬Éè g( x) = e
x
ax £¬ÒÀȻȡ x (0,+ ) .
g ( x) = e Ôòa £¬Áî g ( x) = 0 £¬µÃ x = ln a £¬
) Éϵ¥µ÷µÝÔö£¬
ËùÒÔ g( x) ÔÚ (0,ln a) Éϵ¥µ÷µÝ¼õ£¬ÔÚÇø¼ä(ln a,
...
...
ËùÒÔ g(x)min g (ln a) a(1 ln a) .
a(1 ln a )¡Ý 0£¨µ±ÇÒ½öµ± a=eʱ£¬µÈºÅ³ÉÁ¢£¬´Ëʱ
ÒòΪ 0 a ¡Ü e £¬ËùÒÔ g( x)min
x 1 £©.
ËùÒÔ¶ÔÈÎÒâ x (0,1) (1, ) £¬¶¼ÓÐ ex
ax 0 ºã³ÉÁ¢ .
ËùÒÔµ± 0
x 1 ʱ£¬ f ( x) 0 £»µ± x 1 ʱ£¬ f ( x) 0 .
ËùÒÔº¯Êý f (x) ÔÚ x 1 ´¦È¡µÃ¼«Ð¡Öµ£¬·ûºÏÌâÒâ
.
×ÛÉÏ¢Ù¢Ú¿ÉÖª£ºµ± a ¡Ü e ʱ x 1 ÊǺ¯Êý f ( x) µÄ¼«Ð¡Öµµã .
19£®£¨¹² 14 ·Ö£© ½â£º£¨¢ñ£©ÓÉÌâÒâµÃ
2
2 =4p
£¬½âµÃ
p 1£®
ËùÒÔÅ×ÎïÏß C µÄ×¼Ïß·½³ÌΪ
x
p 1
2
2
£®
2
2
y
y
1
2
A ,y ,B
, y £¬ £¨¢ò£©Éè
1
2
2
2
y
y
2
2 1 1 ÓÉ AB¡ÎOM µÃ k£¬ËùÒÔAB
kOM
1£¬Ôò
2
2
y
y
y
y
2
1
2
1
2
2
ËùÒÔÏß¶ÎABÖеã Q µÄΪ×Ý×ø±êy
1£®
Q
Ö±Ïß AO ·½³ÌΪ
y
2 1
©© ¢Ù y
x x
2
y
y
1
1
2
y
2 2
Ö±Ïß BM ·½³ÌΪ
2
©© ¢Ú
y 2
x 2
x 2
2
y
y
2
2
2
2
2
ÁªÁ¢¢Ù¢Ú½âµÃ
x y 1
2 £¬¼´µã PµÄΪ×Ý×ø±êyP 1£® y 1
Èç¹ûÖ±Ïß BM бÂʲ»´æÔÚ£¬½áÂÛÒ²ÏÔÈ»³ÉÁ¢£® ËùÒÔÖ±Ïß PQ Óë x ÖáÆ½ÐУ®
20£®£¨¹² 13 ·Ö£©
...
y2 y1 2£®