2019Äê±±¾©ÊзáÌ¨Çø¸ßÈýÄ꼶һģÊýѧ(Àí)ÊÔÌâ¼°´ð°¸ ÏÂÔØ±¾ÎÄ

...

¦Ð ¦Ð

ÒòΪ

[ , ] ÊǺ¯Êý y sin x µÄÔöÇø¼ä£¬ 2 2

¦Ð

ËùÒÔ 2m ¡Ü .

3 2 ¦Ð

ËùÒÔ m¡Ü .

12

ËùÒÔ m µÄ×î´óֵΪ

12

.

16£®£¨¹² 13 ·Ö£©

½â£º£¨¢ñ£©Éè¸ÃÉúÑ¡ÖÐÔÂÆ½¾ùÊÕÈëн×ʸßÓÚ

8500 ÔªµÄ³ÇÊÐΪʼþA.

8500 ÔªµÄÓÐ 6 ¸ö£¬

ÒòΪ 15 ×ù³ÇÊÐÖÐÔÂÆ½¾ùÊÕÈëн×ʸßÓÚ

2 ËùÒÔ

P(A) .

5

£¨¢ò£©ÓÉ£¨¢ñ£©ÖªÑ¡ÖÐÆ½¾ùн×ʸßÓÚ

8500 ÔªµÄ³ÇÊеĸÅÂÊΪ

2

3 £¬ £¬µÍÓÚ 8500 ÔªµÄ¸ÅÂÊΪ

5 5

2

ËùÒÔ X ~ B(2, ) .

5 3

9

2

P( X

0) ( ) £»

5 25 2 3 12 1

P( X 1) C

2

£»

5 5 25 2 4 2

2

P( X 2) C

2

( ) 5

25

.

ËùÒÔËæ»ú±äÁ¿ X µÄ·Ö²¼ÁÐΪ£º

P

0 1 2

25

ËùÒÔ X µÄÊýѧÆÚÍûΪ E(X ) 2

5

£¨¢ó£©

2 1

2

X

9

12

25 2

4 25

4 5

.

s s

2

.

2029.£¨¹² 14 ·Ö£©

½â£º£¨¢ñ£©ÒòΪ Æ½Ãæ ABCD

BC ËùÒÔ BC ÒòΪ AA1

ËùÒÔ BC

Æ½Ãæ ABB A £¬Æ½Ãæ ABCD

1 1

Æ½Ãæ ABCD £¬

Æ½Ãæ ABB1 A1 .

Æ½Ãæ

1

Æ½Ãæ ABB A

1 1

AB£¬ AB

BC £¬

ABBA£¬

1

1

AA .

£¨¢ò£©È¡ A1B1 µÄÖеã N £¬Á¬½áBN .

ƽÐÐËıßÐÎABB1A1 ÖÐ AB AA1 £¬ BAA1

ÓÉ£¨¢ñ£©Öª BC Æ½Ãæ ABB A .

1 1

60 .Ò×Ö¤BN A1B1 .

z

C

1

¹ÊÒÔΪ BÔ­µã£¬ BA£¬BN£¬BC ËùÔÚÖ±ÏßÎª×ø±êÖᣬ

½¨Á¢ÈçͼËùʾ¿Õ¼äÖ±½Ç×ø±êϵB xyz.

C

D

D

1

...

...

ÒÀÌâÒ⣬ A(2,0,0), A (1, 3,0), D (1,0,1) £¬

1

M

B

1

ÉèÆ½Ãæ DAA1 µÄÒ»¸ö·¨ÏòÁ¿Îª n ( x, y, z) Ôò

x

B

A

1

N

y

A

AA1 ( 1£¬3£¬,0£©£¬ AD ( 1,0,1)

...

...

Ôò

n AA1 n AD

0

£¬ ¼´ 0

x

3y 0

£¬

x z 0

Áî y = 1£¬µÃ n = (

3,1, 3)£®

Ò×ÖªÆ½Ãæ ABB A µÄÒ»¸ö·¨ÏòÁ¿Îª m = (0,0,1) £¬

1 1

Éè¶þÃæ½Ç D AA1 B µÄÆ½Ãæ½ÇΪ ¦Á£¬¿ÉÖª

ΪÈñ½Ç£¬

Ôò

cos cos n,m

n m

21

3

n m

7

3 1 3

£®

21

£¬ 7

¼´¶þÃæ½Ç D AA1 B µÄÓàÏÒֵΪ

£¨¢ó£©½â£ºÉè DM

DB £¬

1 1

[0,1] £¬ M (x, y, z) £®

£¬ C (0,0,1) £¬

ÒòΪ D (1,0,1) £¬ B

( 1, 3,0)

( x 1,y,z 1)

.

ËùÒÔ DB1 ËùÒÔ x

( 2, 3, 1),DM

3 ,z 1 ) )

1 2 , y

M (1 2 , 3 ,1 CM (1 2 , 3 ,

ÒòΪ CM ¡Î Æ½Ãæ DAA

1

ËùÒÔ CM n = 0

¼´

3(1 2 ) 3 3

0£¬ËùÒÔ ¦Ë=

1

£® 2

DM

ËùÒÔ´æÔÚµã M £¬Ê¹µÃ CM¡Î Æ½Ãæ DAA1 £¬´Ëʱ

DB

1

1 £® 2

2030.£¨¹² 13 ·Ö£©

x

½â£º£¨¢ñ£©ÒòΪ a 0 £¬ x R ËùÒÔ f ( x) (x 2)e £¬

¹Ê f ( x) ( x 1)e £¬

x

Áî f ( x) 0£¬µÃ x 1 £¬ËùÒÔµ¥µ÷µÝÔöÇø¼äΪ Áî f ( x) 0£¬µÃ x 1 £¬ËùÒÔµ¥µ÷µÝÇø Ϊ¼ä

x

(1, (

) £»

,1) £®

£¨¢ò£©ÓÉÌâ¿ÉµÃ f (x) (x 1)(e ax) .

ax 0ºã³ÉÁ¢£¬

¢Ù µ± a ¡Ü 0 ʱ£¬¶ÔÈÎÒâx (0,+ ) £¬¶¼ÓÐ ex ËùÒÔµ± 0

x 1 ʱ£¬ f ( x) 0 £»µ± x 1 ʱ£¬ f ( x) 0 .

ËùÒÔº¯Êý f (x) ÔÚ x 1 ´¦È¡µÃ¼«Ð¡Öµ£¬·ûºÏÌâÒâ.

x

¢Ú µ± 0 a ¡Ü eʱ£¬Éè g( x) = e

x

ax £¬ÒÀȻȡ x (0,+ ) .

g ( x) = e Ôòa £¬Áî g ( x) = 0 £¬µÃ x = ln a £¬

) Éϵ¥µ÷µÝÔö£¬

ËùÒÔ g( x) ÔÚ (0,ln a) Éϵ¥µ÷µÝ¼õ£¬ÔÚÇø¼ä(ln a,

...

...

ËùÒÔ g(x)min g (ln a) a(1 ln a) .

a(1 ln a )¡Ý 0£¨µ±ÇÒ½öµ± a=eʱ£¬µÈºÅ³ÉÁ¢£¬´Ëʱ

ÒòΪ 0 a ¡Ü e £¬ËùÒÔ g( x)min

x 1 £©.

ËùÒÔ¶ÔÈÎÒâ x (0,1) (1, ) £¬¶¼ÓÐ ex

ax 0 ºã³ÉÁ¢ .

ËùÒÔµ± 0

x 1 ʱ£¬ f ( x) 0 £»µ± x 1 ʱ£¬ f ( x) 0 .

ËùÒÔº¯Êý f (x) ÔÚ x 1 ´¦È¡µÃ¼«Ð¡Öµ£¬·ûºÏÌâÒâ

.

×ÛÉÏ¢Ù¢Ú¿ÉÖª£ºµ± a ¡Ü e ʱ x 1 ÊǺ¯Êý f ( x) µÄ¼«Ð¡Öµµã .

19£®£¨¹² 14 ·Ö£© ½â£º£¨¢ñ£©ÓÉÌâÒâµÃ

2

2 =4p

£¬½âµÃ

p 1£®

ËùÒÔÅ×ÎïÏß C µÄ×¼Ïß·½³ÌΪ

x

p 1

2

2

£®

2

2

y

y

1

2

A ,y ,B

, y £¬ £¨¢ò£©Éè

1

2

2

2

y

y

2

2 1 1 ÓÉ AB¡ÎOM µÃ k£¬ËùÒÔAB

kOM

1£¬Ôò

2

2

y

y

y

y

2

1

2

1

2

2

ËùÒÔÏß¶ÎABÖеã Q µÄΪ×Ý×ø±êy

1£®

Q

Ö±Ïß AO ·½³ÌΪ

y

2 1

©© ¢Ù y

x x

2

y

y

1

1

2

y

2 2

Ö±Ïß BM ·½³ÌΪ

2

©© ¢Ú

y 2

x 2

x 2

2

y

y

2

2

2

2

2

ÁªÁ¢¢Ù¢Ú½âµÃ

x y 1

2 £¬¼´µã PµÄΪ×Ý×ø±êyP 1£® y 1

Èç¹ûÖ±Ïß BM бÂʲ»´æÔÚ£¬½áÂÛÒ²ÏÔÈ»³ÉÁ¢£® ËùÒÔÖ±Ïß PQ Óë x ÖáÆ½ÐУ®

20£®£¨¹² 13 ·Ö£©

...

y2 y1 2£®