(完整版)运用几何画板辅助初中数学教学的实践及案例 下载本文

通过改变a、b、c的值就可以得到相应二次函数的图象,在课堂上可以生动地演示抛物线的形成过程,把二次函数的一般规律形象地展现出来,并且通过《几何画板》的度量功能在画面上显示a、b、c、x、y的度量结果,不难得出a、b、c值的改变与抛物线的变化关系。学生既可以看到平滑优美的图象产生过程,也可以利用《几何画板》的度量功能和计算功能在画面上进行猜想、归纳,这种具有建构意义的动态生成过程,极大地提高了学习效率。

所以,利用《几何画板》在剖析问题的实质时,可以使学生清楚了解要解决问题的关键所在,与传统教学相比较,它能形象直观的反映问题,更进一步地引导学生进行数学的实验和探究,培养学生大胆猜测、小心求证的开拓精神和科学态度,在教学过程中体现了学生为主体,教师为主导的思想,把学习的主动权真正交给了学生,充分调动了学生的学习兴趣,发挥了学生的学习积极性,培养了学生的创新思维和实践能力,实现了学生真正意义的建构。 9.利用《几何画板》的度量和计算功能验证定理及重要结论 初中数学教学中我们会遇到一些结论性的问题,我们往往要通过作出很多的图形进行繁杂的度量和运算,但是几何画板要实现这个效果就很简单。 ①数形结合,验证勾股定理

(1)任意作rt△abc,分别从三条边出发向外作正方形。

(2)通过度量得出每个正方形的面积,计算正方形acfg与正方形bchi的面积之和,并与正方形abde的面积进行比较。 (3)得出结论ac2+bc2=ab2。

(4)拖动任意一点,改变图形大小,观察能否得出上述结论。

②验证圆周角定理

在圆当中,很多定理都可以用几何画板的数形结合能力去验证,以验证圆周角定理为例:

如上图,弧ac的大小不变时,让一个学生拖动b点在圆周上运动,同时观察利用度量功能所测得的数字,学生们自然会得出同弧所对的圆周角相等的结论。

几何画板在反比例函数中的应用与以上两个类似,这里只介绍一个k的几何意义的问题:在反比例函数图像上任取一点p,分别向x、y轴作垂线,围成四边形的面积是|k|。

当拖动点p时四边形的面积始终保持不变,当改变k的值时四边形的面积也在发生变化,但始终等于|k|。这个知识点,如果我们老师只是一味的去讲,非常枯燥乏味学生不愿意听,效果不会很理想,用这个软件形象生动,学生兴致很高,学得当然很好。另外在讲反比例函数的对称性时,我设计了一个动画,学生看了之后很容易就理解了反比例函数关于原点的中心对称性。还有如 与的对称性也可以通过动画演示,学生很容易理解。 10.利用几何画板解决动点问题

在中考当中我们经常会遇到一些动点问题,这些题是学生感觉是非常难的。如果我们用几何画板去模拟演示这些题目学生就会明白题意从而解题思路会豁然开朗。因为几何画板中的动画功能可以生动、连续地表现运动效果,形象地描画出运动对象的运动轨迹,而且轨迹的生成是动态的、逐步的,充分表现出轨迹产生的全过程,学生在观察、实验、猜测、验证、推理与交流等数学活动中,形成自己对数学知识的理解,这就为学生积极主动建构知识体系提供了学习的平台。

问题⑴:直线ab经过⊙o的圆心,且与⊙o相交于a、b两点,点c在⊙o上,且∠aoc=300,点p是直线ab上的一个动点(与点o不重合),直线pc与⊙o相交于点q,是否存在点p,使得qp=qo,如果存在,那么这样的点p共有几个?并相应求出∠ocp的大小;如果不存在,说明理由。

问题中的点p是一个运动的点,在解题过程中学生对这类点的处理往往束手无策,利用几何画板让学生自己动手操作,移动p点,观察图形的变化,问题便迎刃而解。 11.为学生验证问题搭建技术平台,使《几何画板》成为“数学实验室”,让学生自主开展“研究数学”的活动

如概率中的抛硬币实验,也可以用几何画板的迭代功能和符号函数sgn进行模拟实验。如图所示,是一个5角的硬币,为了让学生看得清数字与图案这两面,在硬币荷花图案这一面的右边加上了一条黑线,规定数字这一面为正面,图案这一面为反面,单击[投掷]按钮进行实验,单击[归零]按钮则清除实验数据。开始几次可以速度慢些,然后可以右键单击图片或[投掷]按钮加快速度。通过本虚拟实验,可以进一步加深对概率这一概念的理解。

在初三总复习阶段有这样一道题:如图,△abc 和△a1b1c1 均为等边三角形,点o即是ac的中点,又是a1c 1的中点,求bb1:aa1 的值。

在教师的引导下,学生打开几何画板,做等边 ,取ac中点o,再做等边 ,在几何画板中选中点a1,拖动它旋

转 。