3000m3液化气球罐的优化设计—(毕业设计) 下载本文

安徽理工大学毕业设计

支柱上应该设置排气孔,以保护支柱内部的气体在受热膨胀时能及时逸出,而避免支柱由此而失稳破裂。正常操作时,为隔绝支柱内气体与外界的接触,排气孔可以用易熔塞堵孔。易熔塞由低熔点合金填充,常用易熔塞的合金组成为:Bi40%;Sn4%;Pb20%。

对于储存易燃、易爆及液化石油气物料的球罐,支柱上还应设置防火隔热层,以防止发生火灾时,支柱被烧软失稳倒塌,引起球罐破坏事故。按防火规范要求,对于球罐防火隔热的耐火性不低于2h。国外相关的防火规范要求其耐火性在2-2.5h以上。

选用的普通防火水泥厚度为50mm,可以保证耐火性为2h。按规定球罐必须设置静电接地板,每台球罐至少应在支柱底部位置设置2个对称布置的防静电接地板。

图2-9 球罐支柱

图片来源:参考文献[7]

(2)底板 支柱底板上开设地脚螺栓,应为径向长圆孔以便于支柱的径向移动,特别是在球罐整体焊后,在热处理过程中,由于球罐的热胀冷缩,支柱需

16

安徽理工大学毕业设计

做经向位置调整,位移主要是通过支柱底板底部的固定滑板(通常为预埋板)货滚柱来实现。由于支柱承受的载荷大,底板的摩擦力较大,实现自动移动是比较困难的,如果不进行必要的调整,球壳与支柱连接部位的高应力得不到释放。因此,需根据计算的位移值来确定柱脚的位置。

(3)拉杆 拉杆是作为球罐承受风载荷及地震载荷的部件,为了增加球罐的稳定性而设置。拉杆的结构分为可调式和固定式两种,所有拉杆与支柱的上下连接点应分别在同一标高。

<1>可调式拉杆(见图2-10)采用圆钢加工成长短两段而成。拉杆与支柱采用销连接,两根拉杆立体交叉处应留有间隙,不得焊死。用可调螺母连接以调节松紧度。拉杆张紧程度应均匀,拉力不宜过大。日常球罐运转中应注意液体冬夏温差变化和小地震引起的拉杆松动,应及时进行松紧调整。确定上下两拉杆长度时,应考虑便于安装及球罐在运转中拉杆长度的调节。同时,由于调节结构为机加工件,当上段过长受机加工的限制时,应考虑再分段,即采用图2-10所示的“连接板”结构形式。

<2>固定式拉杆(见图2-11),一般采用钢管。拉杆与支柱之间采用焊接结构,拉杆与拉杆的交叉处采用固定板焊接结构或直接焊接结构。

2-10可调节式拉杆 图片来源:参考文献[7]

17

安徽理工大学毕业设计

图2-11固定式拉杆图

图片来源:参考文献[7]

2.4开孔设计

球罐一般设有物料进出口接管、人孔、排净放污接管以及各种仪表接管(压力计、温度计、液面计等),其中人孔一般设2个,可分别布置在球罐上、下极带板中心,其他的接管也应尽量设计在上、下极板上,便于集中控制、在制造厂完成接管的组焊和焊后热处理,保证接管部位的质量。开孔应避开焊缝。若不得不在焊缝上开孔时,则必须对以开孔中心为圆心,1.5倍开孔直径为半径的圆内所包容的焊缝进行100%无损检测,且合格。 2.4.1人孔结构

球罐的人孔是操作人员进出球罐进行检验及维修用的,在现场组焊需要进行焊后整体热处理的球罐,人孔又成为进风,燃烧口及烟气排出烟囱用。因此人孔直径的选择必须考虑操作人员携带工具进出球罐方便,以及热处理时工艺气流对截面的要求。一般选用DN600 较适宜。通常球罐上应设有两个人孔,分别在上下级带上,人孔与球壳相焊部分应选用与球壳相同的材料。

人孔结构在球罐上最好采用回转盖及水平吊盖两种,补强可采用整体锻件凸缘补强及补强板补强两种,在本次设计中采用整体锻件凸缘补强的人孔结构较合理,因为它即保证了因开孔削弱的强度得到了充分补强,节省材料,且避免了补强处壁厚的突变,降低了应力集中程度,焊缝采用对接,便于进行射线检测或超声波检测,从而保证焊缝质量。

在本次设计中上人孔采用水平吊盖式,下人孔采用回转盖式。上下人孔的直径都选用DN600 材料选用和球壳相同的材料。 2.4.2接管结构

由于工艺操作需要各种接管,球罐接管部分是强度较薄的部位,国内外较多的事故都是从接管焊接处发生的,为了提高该处的安全性,国外制造的球罐大多

18

安徽理工大学毕业设计

采用厚壁管或整体锻件凸缘等补强措施,以及在接管上加焊筋条支撑等办法来提高刚度和耐疲劳性能

(1) 接管材料与球壳相焊接的接管最好选用与球壳相同的材料,低温球罐应选用低温的钢管,并且保证在低温下具有足够的冲击韧性,接管的补强结构材料也应遵循同样的要求。本设计接管所选用的接管材料和球壳的材料相同都16MnDR

(2) 开孔位置球罐开孔应尽量设计在上,下极带上,便于集中控制,并使接管焊接能在制造长完成,便于进行焊厚热处理,保证接管焊接部位的质量。开孔位置应于焊缝错开,其间距应大于3 倍的板厚,并且必须大于100mm,在球罐焊缝上不应开孔。

(3) 孔的补强尺寸一般压力容器规范都规定了不需要补强的最大开孔接管尺寸,但是在球罐不宜使用此规定。

(4) 接管的补强结构球罐接管的补强尺寸有以下几种类型: ① 补强圈补强的接管补强结构。 ② 厚壁管补强结构 ③ 结整体凸缘补强构

为了提高接管的抗疲劳性能,球壳与接管的连接焊缝除了应具有足够的强度外,还应具有抗疲劳的能力,以克服进出料时的冲击,管道的振动,操作压力的波动和工艺配管应力等因素引起的疲劳破坏。在本次设计中采用整体凸缘补强,它可以同时补强球壳和接管。球罐上的所有接管都要设置加强筋,对小接管群可采用联合加强在本次设计中接管采用的材料和球壳的材料相同,接管补强采用整体凸缘补强界构。 2.5球罐的附件 2.5.1梯子平台

梯子平台的存在是为了方便日常的操作、检修以及安全阀的定期校检,本次设计中会设置顶平台、中间平台以及直达这些平台的斜梯、直梯或者盘梯。

顶平台作为工艺操作平台,在球罐顶部是一个圆形平台,所有的人孔接管以及安全阀、仪表等均在圆平台内,以便于操作;平台的宽度不应小于800mm。中间平台设置在赤道部位的目的是为了操作人员上下顶平台时中间休息或者作为检查球罐赤道部位的外部情况。

本次梯子设计采用的盘梯,为近似球面的螺线形。这样梯子在球面的距离能始终保持一致,没有陡升陡降的感觉,行走舒适还有利于保温的施工。 2.5.2喷淋装置

球罐上装设水喷淋装置是为了球罐内的液化石油气、可燃性气体以及有毒有

19