1990高考数学全国卷及答案理 下载本文

当a>0时,方程⑥无零解. 所以,原方程的实数解是: 当a=0时,z=0;

.

情形2.若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为 -y2+2│y│=a. ⑦

(Ⅰ)令y>0,方程⑦变为-y2+2y=a,即(y-1)2=1-a. ⑧ 由此可知:当a>1时,方程⑧无实根. 当a≤1时解方程⑧得

y=1±,

从而, 当a=0时,方程⑧有正根 y=2;

当0

(Ⅱ)令y<0,方程⑦变为-y2-2y=a,即 (y+1)2=1-a. ⑨ 由此可知:当a>1时,方程⑨无实根. 当a≤1时解方程⑨得 y=-1±从而,当a=0时,方程⑨有负根 y=-2; 当0

当01时,原方程无纯虚数解.

解法二:设z=x+yi代入原方程得 于是原方程等价于方程组

,

)i.

由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数,或为纯虚数.下面分别加以讨论.

情形1.若y=0,即求原方程的实数解z=x.此时,①式化为 x2+2│x│=a.

即 | x |2+2│x│=a. ③ 解方程③得

, 所以,原方程的实数解是

.

情形2.若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为 -y2+2│y│=a.

即 -│y│2 +2│y│=a. ④

当a=0时,因y≠0,解方程④得│y│=2, 即当a=0时,原方程的纯虚数解是z=±2i. 当0

,

即当0

.

而当a>1时,方程④无实根,所以这时原方程无纯虚数解.

解法三:因为z2=-2│z│+a是实数,所以若原方程有解,则其 解或为实数,或为纯虚数,即z=x或z=yi(y≠0). 情形1.若z=x.以下同解法一或解法二中的情形1.

情形2.若z=yi(y≠0).以下同解法一或解法二中的情形2.

解法四:设z=r(cosθ+isinθ),其中r≥0,0≤θ<2π.代入原方程得 r2cos2θ+2r+ir2sin2θ=a. 于是原方程等价于方程组

情形1.若r=0.①式变成 0=a. ③

由此可知:当a=0时,r=0是方程③的解. 当a>0时,方程③无解.

所以, 当a=0时,原方程有解z=0; 当a>0时,原方程无零解.

考查r>0的情形.

(Ⅰ)当k=0,2时,对应的复数是z=±r.因cos2θ=1,故①式化为 r2+2r=a. ④ . 由此可知:当a=0时,方程④无正根; 当a>0时,方程④有正根 所以,当a>0时,原方程有解

.

.

(Ⅱ)当k=1,3时,对应的复数是z=±ri.因cos2θ=-1,故①式化为 -r2+2r=a,即(r-1)2=1-a, ⑤

由此可知:当a>1时,方程⑤无实根,从而无正根; .

从而, 当a=0时,方程⑤有正根 r=2;

所以, 当a=0时,原方程有解z=±2i; 当0

.

当a>1时,原方程无纯虚数解.

(25)本小题考查椭圆的性质,距离公式,最大值知识以及分析问题的能力. 解法一:根据题设条件,可取椭圆的参数方程是

其中a>b>0待定,0≤θ<2π.

设椭圆上的点(x,y)到点P的距离为d,则

大值,由题设得 因此必有

,

, 由此可得 b=1,a=2. 所求椭圆的参数方程是

解法二:设所求椭圆的直角坐标方程是 其中a>b>0待定.

, 设椭圆上的点(x,y)到点P的距离为d,则

其中

-byb.

.