解:根据题意,知k=3>0,且y1>y2。根据一次函数的性质“当k>0时,y随x的增大而增大”,得x1>x2。故选A。 判断函数图象的位置
例3. 一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
解:由kb>0,知k、b同号。因为y随x的增大而减小,所以k<0。所以b<0。故一次函数y=kx+b的图象经过第二、三、四象限,不经过第一象限。故选A . 典型例题: 例1. 一个弹簧,不挂物体时长12cm,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3kg物体后,弹簧总长是13.5cm,求弹簧总长是y(cm)与所挂物体质量x(kg)之间的函数关系式.如果弹簧最大总长为23cm,求自变量x的取值范围.
分析:此题由物理的定性问题转化为数学的定量问题,同时也是实际问题,其核心是弹簧的总长是空载长度与负载后伸长的长度之和,而自变量的取值范围则可由最大总长→最大伸长→最大质量及实际的思路来处理. 解:由题意设所求函数为y=kx+12 则13.5=3k+12,得k=0.5 ∴所求函数解析式为y=0.5x+12 由23=0.5x+12得:x=22
∴自变量x的取值范围是0≤x≤22
4、确定函数定义域的方法:
(1)关系式为整式时,函数定义域为全体实数;
(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;
(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 例题:下列函数中,自变量x的取值范围是x≥2的是( ) A.y=2?x B.y=1 C.y=4?x2 D.y=x?22x?2 x?2函数y?x?5中自变量x的取值范围是___________. 已知函数y??x?2,当?1?x?1时,y的取值范围是 ( ) A.??y? B.?y? C.?y? D.?y? 5、函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。 7、描点法画函数图形的一般步骤
第一步:列表(表中给出一些自变量的值及其对应的函数值);
第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 8、函数的表示方法
列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
523232523252325212图象法:形象直观,但只能近似地表达两个变量之间的函数关系。 9、正比例函数及性质
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数. 注:正比例函数一般形式 y=kx (k不为零) ① k不为零 ② x指数为1 ③ b取零
解析式:y=kx(k是常数,k≠0) 必过点:(0,0)、(1,k)
走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限 增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小 倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴
例题:.正比例函数y?(3m?5)x,当m 时,y随x的增大而增大. 若y?x?2?3b是正比例函数,则b的值是 ( ) A.0 B. C.? D.? .函数y=(k-1)x,y随x增大而减小,则k的范围是 ( ) A.k?0 B.k?1 C.k?1 D.k?1
东方超市鲜鸡蛋每个0.4元,那么所付款y元与买鲜鸡蛋个数x(个)之间的函数关系式是_______________.
平行四边形相邻的两边长为x、y,周长是30,则y与x的函数关系式是__________. 10、一次函数及性质
一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.
注:一次函数一般形式 y=kx+b (k不为零) ① k不为零 ②x指数为1 ③ b取任意实数
232332一次函数y=kx+b的图象是经过(0,b)和(-,0)两点的一条直线,我们称它
为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)
(1)解析式:y=kx+b(k、b是常数,k?0) (2)必过点:(0,b)和(-,0)
(3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限
?k?0?k?0直线经过第一、二、三象限 ??直线经过第一、三、四象限 ???b?0?b?0?k?0?k?0直线经过第一、二、四象限 ??直线经过第二、三、四象限 ??b?0b?0??bkbk(4)增减性: k>0,y随x的增大而增大;k<0,y随x增大而减小. (5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴. (6)图像的平移: 当b>0时,将直线y=kx的图象向上平移b个单位; 当b<0时,将直线y=kx的图象向下平移b个单位.
例题:若关于x的函数y?(n?1)xm?1是一次函数,则m= ,n . .函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是( )
将直线y=3x向下平移5个单位,得到直线 ;将直线y=-x-5向上平移5个单位,得到直线 .
若直线y??x?a和直线y?x?b的交点坐标为(m,8),则a?b?____________. 已知函数y=3x+1,当自变量增加m时,相应的函数值增加( ) A.3m+1 B.3m C.m D.3m-1