答:由傅立叶里叶定律,
图中随x增加而减小,因而随2增加x而增加,而温度t随x增加而降低,所以导热系数随温
度增加而减小。
64、夏季在维持20℃的室内工作,穿单衣感到舒适,而冬季在保持22℃的室内工作时,却必须穿绒衣才
觉得舒服。试从传热的观点分析原因。
答:首先,冬季和夏季的最大区别是室外温度的不同。夏季室外温度比室内气温高,因此通过墙壁的热量传递方向是出室外传向室内。而冬季室外气温比室内低,通过墙壁的热量传递方向是由室内传向室外。因此冬季和夏季墙壁内表面温度不同,夏季高而冬季低。因此,尽管冬季室内温度(22℃)比夏季略高(20℃),但人体在冬季通过辐射与墙壁的散热比夏季高很多。根据上题人体对冷感的感受主要是散热量的原理,在冬季散热量大,因此要穿厚一些的绒衣。
65、冬天,经过在白天太阳底下晒过的棉被,晚上盖起来感到很暖和,并且经过拍打以后,效果更加明
显。试解释原因。
答:棉被经过晾晒以后,可使棉花的空隙里进人更多的空气。而空气在狭小的棉絮空间里的热量传递方式主要是导热,由于空气的导热系数较小(20℃,1.01325×10Pa时,空气导热系数为0.0259W/(m·K),具有良好的保温性能。而经过拍打的棉被可以让更多的空气进入,因而效果更明显。
5
66、由对流换热微分方程
知,该式中没有出现流速,有人因此得出结论:表面传
热系数h与流体速度场无关。试判断这种说法的正确性?
答:这种说法不正确,因为在描述流动的能量微分方程中,对流项含有流体速度,即要获得流体的温度场,必须先获得其速度场,“流动与换热密不可分”。因此表面传热系数必与流体速度场有关。
67、在流体温度边界层中,何处温度梯度的绝对值最大?为什么?有人说对一定表面传热温差的同种流体,
可以用贴壁处温度梯度绝对值的大小来判断表面传热系数h的大小,你认为对吗?
答:在温度边界层中,贴壁处流体温度梯度的绝对值最大,因为壁面与流体间的热量交换都要通过贴壁处
不动的薄流体层,因而这里换热最剧烈。由对流换热微分方程,对一定表面传热温
差的同种流体λ与△t均保持为常数,因而可用
绝对值的大小来判断表面传热系数h的大小。
68、简述边界层理论的基本论点。
答:边界层厚度δ、δt与壁的尺寸l相比是极小值; 边界层内壁面速度梯度及温度梯度最大;
边界层流动状态分为层流与紊流,而紊流边界层内,紧贴壁面处仍将是层流,称为层流底层;
流场可以划分为两个区:边界层区(粘滞力起作用)和主流区,温度同样场可以划分为两个区:边界层区(存在温差)和主流区(等温区域);
对流换热热阻主要集中在热边界层区域的导热热阻。层流边界层的热阻为整个边界层的导热热阻。紊流边界层的热阻为层流底层的导热热阻
69、有若干个同类物理现象,怎样才能说明其单值性条件相似。试设想用什么方法对以实现物体表面温度
恒定、表面热流量恒定的边界条件?
答:所谓单值条件是指包含在准则中的各已知物理量,即影响过程特点的那些条件──时间条件、物理条件、边界条件。所谓单值性条件相似,首先是时间条件相似(稳态过程不存在此条件)。然后,几何条件、边界条件及物理条件要分别成比例。采用饱和蒸汽(或饱和液体)加热(或冷却)可实现物体表面温度恒定的边界条件,而采用电加热可实现表面热流量恒定的边界条件。
70、对皆内强制对流换热,为何采用短管和弯管可以强化流体的换热?
答:采用短管,主要是利用流体在管内换热处于入口段温度边界层较薄,因而换热强的特点,即所谓的“入口效应”,从而强化换热。而对于弯管,流体流经弯管时,由于离心力作用,在横截面上产生二次环流,增加了扰动,从而强化了换热。
71、在地球表面某实验室内设计的自然对流换热实验,到太空中是否仍然有效,为什么?
答:该实验到太空中无法得到地面上的实验结果。因为自然对流是由流体内部的温度差从而引起密度差并在重力的作用下引起的。在太空中实验装置格处于失重状态,因而无法形成自然对流,所以无法得到顶期的实验结果。
72、在对流温度差大小相同的条件下,在夏季和冬季,屋顶天花板内表面的对流放热系数是否相同?为什么?
答:在夏季和冬季两种情况下,虽然它们的对流温差相同,但它们的内表面的对流放热系数却不一定相等。原因:在夏季tf<tw,在冬季tf>tw,即在夏季,温度较高的水平壁面在上,温度较低的空气在下,自然对流不易产生,因此放热系数较低.反之,在冬季,温度较低的水平壁面在上,而温度较高的空气在下,自然对流运动较强烈,因此,放热系数较高。
73、试述沸腾换热过程中热量传递的途径。
答:半径R≥Rmin的汽泡在核心处形成之后,随着进一步地的加热,它的体积将不断增大,此时的热量是以导热方式输入, 其途径一是由汽泡周围的过热液体通过汽液界面输入, 另一是直接由汽泡下面的汽固界面输入,由于液体的导热系数远大于蒸汽,故热量传递的主要途径为前者。 当汽泡离开壁面升入液体后,周围过热液体继续对它进行加热,直到逸出液面,进入蒸汽空间。
74、两滴完全相同的水滴在大气压下分别滴在表面温度为120℃和400℃的铁板上,试问滴在哪块板上的
水滴先被烧干,为什么?
答:在大气压下发生沸腾换热时,上述两水滴的过热度分别是℃和℃,由
大容器饱和沸腾曲线,前者表面发生的是核态沸腾,后者发生膜态沸腾。虽然前者传热温差小,但其表面传热系数大,从而表面热流反而大于后者。所以水滴滴在120℃的铁板上先被烧干。
75、有—台放置于室外的冷库,从减小冷库冷量损失的角度出发,冷库外壳颜色应涂成深色还是浅色?
答:要减少冷库冷损,须尽可能少地吸收外界热量,而尽可能多地向外释放热量。因此冷库败取较浅的颜色,从而使吸收的可见光能量较少,而向外发射的红外线较多。
76、何谓“漫─灰表面”?有何实际意义?
答:“漫─灰表面”是研究实际物体表面时建立的理想体模型.漫辐射、漫反射指物体表面在辐射、反射时各方向相同. 灰表面是指在同一温度下表面的辐射光谱与黑体辐射光谱相似,吸收率也取定值.“漫─灰表面”的实际意义在于将物体的辐射、反射、吸收等性质理想化,可应用热辐射的基本定律了。大部分工程材料可作为漫辐射表面,并在红外线波长范围内近似看作灰体.从而可将基尔霍夫定律应用于辐射换热计算中。
77、某楼房室内是用白灰粉刷的, 但即使在晴朗的白天, 远眺该楼房的窗口时, 总觉得里面黑洞洞的, 这
是为什么?
答:窗口相对于室内面积来说较小, 当射线(可见光射线等)从窗口进入室内时在室内经过多次反复吸收、反射, 只有极少的可见光射线从窗口反射出来, 由于观察点距离窗口很远, 故从窗口反射出来的可见光到达观察点的份额很小, 因而就很难反射到远眺人的眼里, 所以我们就觉得窗口里面黑洞洞的.
78、黑体表面与重辐射面相比,均有J=E。这是否意味着黑体表面与重辐射面具有相同的性质?
b
答:虽然黑体表面与重辐射面均具有J=Eb的特点,但二者具有不同的性质。黑体表面的温度不依赖于其他参与辐射的表面,相当于源热势。而重辐射面的温度则是浮动的,取决于参与辐射的其他表面。
79、要增强物体间的辐射换热,有人提出用发射率ε
大的材料。而根据基尔霍夫定律,对漫灰表面ε=
α,即发射率大的物体同时其吸收率也大。有人因此得出结论:用增大发射率ε的方法无法增强辐射换热。
请判断这种说法的正确性,并说明理由。
答:在其他条件不变时,由物体的表面热阻以增强辐射换热。因此,上述说法不正确。
可知,当ε越大时,物体的表面辐射热阻越小,因而可
80、对壳管式换热器来说,两种流体在下列情况下,何种走管内,何种走管外?
(1)清洁与不清洁的;(2)腐蚀性大与小的;(3)温度高与低的;(4)压力大与小的;(5)流量大与小的;(6)粘度大与小的。
答:(1)不清洁流体应在管内,因为壳侧清洗比较困难,而管内可定期折开端盖清洗;(2)腐蚀性大的流体走管内,因为更换管束的代价比更换壳体要低,且如将腐蚀性强的流体置于壳侧,被腐蚀的不仅是壳体,还有管子;(3)温度低的流体置于壳侧,这样可以减小换热器散热损失;(4)压力大的流体置于管内,因为管侧耐压高,且低压流体置于壳侧时有利于减小阻力损;(5)流量大的流体放在管外,横向冲刷管束可使表面传热系数增加;(6)粘度大的流体放在管外,可使管外侧表面传热系数增加。
二、计算题
(一)计算题解题方略
1、稳态导热问题
(1)截面直肋肋片的传热量和肋端温度的求解。
(2)单层及多层平壁在第三类边界条件下导热问题的计算,
(3)单层及多层圆筒壁在第三类边界条件下导热每米供热管道的散热损失。
2、非稳态导热问题
(1)集总参数法求解任意形状物体(如热电偶)的瞬态冷却或加热问题。 (2)公式法或诺谟图法求解任意形状物体(如热电偶或平板)的瞬态冷却或加热问题。
3、对流换热问题
(1)外掠平板或管内强制对流换热问题在不同流态下的换热分析及计算。 (2)横掠单管或管束的自然或强制对流换热问题的计算。
4、辐射换热问题 (1)两个和三个非凹面组成的封闭腔体,各个表面之间的辐射换热问题的计算,(2)两个平行平板之间的辐射换热问题的计算。
5、注意事项
(1) 对流换热问题中,当流体为气流时,有时需要同时考虑对流和辐射换热; (2) 对于长直的园管换热问题,往往要计算单位管长的换热量;
(3) 对于管内强迫对流换热问题,应注意层流和紊流时的实验关联式的选取,
而且流体定性温度的在不同边界条件下(如常壁温和常热流边界条件)确