×îи߿¼ÊýѧµÚÒ»ÂÖ֪ʶµãÊáÀí¸´Ï°½Ì°¸18 - ͼÎÄ ÏÂÔØ±¾ÎÄ

¼¯ Ìå ±¸ ¿Î ½Ì °¸

¿ÎÌ⠽̣¨1£©Í¨¹ý¶ÔÈÎÒâÈý½ÇÐα߳¤ºÍ½Ç¶È¹ØÏµµÄ̽Ë÷£¬ÕÆÎÕÕý Ä¿£¨2£©Äܹ»ÔËÓÃÕýÏÒ¶¨Àí¡¢ÓàÏÒ¶¨ÀíµÈ֪ʶºÍ·½·¨½â¾öÒ»±ê ЩÓë²âÁ¿ºÍ¼¸ºÎ¼ÆËãÓйصÄʵ¼ÊÎÊÌâ¡£ ¶Ô±¾½²ÄÚÈݵĿ¼²ìÖ÷񻃾¼°Èý½ÇÐεı߽Çת»¯¡¢Èý½ÇÐÎÐÎÃü×´µÄÅжϡ¢Èý½ÇÐÎÄÚÈý½Çº¯ÊýµÄÇóÖµÒÔ¼°Èý½ÇºãµÈʽµÄÖ¤Ã÷ÎÊÌâÌ⣬Á¢Ì弸ºÎÌåµÄ¿Õ¼ä½ÇÒÔ¼°½âÎö¼¸ºÎÖеÄÓйؽǵÈÎÊÌâ¡£½ñ ×ߺó¸ß¿¼µÄÃüÌâ»áÒÔÕýÏÒ¶¨Àí¡¢ÓàÏÒ¶¨ÀíΪ֪ʶ¿ò¼Ü£¬ÒÔÈý½ÇÐÎÏò ΪÖ÷ÒªÒÀÍУ¬½áºÏʵ¼ÊÓ¦ÓÃÎÊÌ⿼²ìÕýÏÒ¶¨Àí¡¢ÓàÏÒ¶¨Àí¼°Ó¦Óá£ÌâÐÍÒ»°ãΪѡÔñÌâ¡¢Ìî¿ÕÌ⣬Ҳ¿ÉÄÜÊÇÖС¢ÄѶȵĽâ´ðÌâ¡£ ½Ìѧ¶àýÌå¿Î¼þ ×¼±¸ Õý¡¢ÓàÏÒ¶¨Àí¼°Ó¦Ó㨹² 6 ¿Îʱ£© ÐÞ¸ÄÓ봴РѧÏÒ¶¨Àí¡¢ÓàÏÒ¶¨Àí£¬²¢Äܽâ¾öһЩ¼òµ¥µÄÈý½ÇÐζÈÁ¿ÎÊÌ⣻

Ò»£®ÖªÊ¶ÊáÀí£º 1£®Ö±½ÇÈý½ÇÐÎÖи÷ÔªËØ¼äµÄ¹ØÏµ£º Èçͼ£¬ÔÚ¡÷ABCÖУ¬C£½90¡ã£¬AB£½c£¬AC£½b£¬BC£½a¡£ £¨1£©Èý±ßÖ®¼äµÄ¹ØÏµ£ºa2£«b2£½c2¡££¨¹´¹É¶¨Àí£© £¨2£©Èñ½ÇÖ®¼äµÄ¹ØÏµ£ºA£«B£½90¡ã£» £¨3£©±ß½ÇÖ®¼äµÄ¹ØÏµ£º£¨Èñ½ÇÈý½Çº¯Êý¶¨Ò壩 sinA£½cosB£½£¬cosA£½sinB£½£¬tanA£½¡£ 2£®Ð±Èý½ÇÐÎÖи÷ÔªËØ¼äµÄ¹ØÏµ£º ½ÌÈçͼ6-29£¬ÔÚ¡÷ABCÖУ¬A¡¢B¡¢CΪÆäÄڽǣ¬a¡¢b¡¢c·Öacbcabѧ±ð±íʾA¡¢B¡¢CµÄ¶Ô±ß¡£ ¹ý³Ì £¨1£©Èý½ÇÐÎÄڽǺͣºA£«B£«C£½¦Ð¡£ £¨2£©ÕýÏÒ¶¨Àí£ºÔÚÒ»¸öÈý½ÇÐÎÖУ¬¸÷±ßºÍËüËù¶Ô½ÇµÄÕý ÏҵıÈÏàµÈ¡£ abc???2R¡£ sinAsinBsinC£¨RΪÍâ½ÓÔ²°ë¾¶£© £¨3£©ÓàÏÒ¶¨Àí£ºÈý½ÇÐÎÈκÎÒ»±ßµÄƽ·½µÈÓÚÆäËûÁ½±ßƽ·½µÄºÍ¼õÈ¥ÕâÁ½±ßÓëËüÃǼнǵÄÓàÏҵĻýµÄÁ½±¶¡£ a2£½b2£«c2£­2bccosA£»b2£½c2£«a2£­2cacosB£»c2£½a2£«b2£­2abcosC¡£ 3£®Èý½ÇÐεÄÃæ»ý¹«Ê½£º £¨1£©¡÷£½aha£½bhb£½chc£¨ha¡¢hb¡¢hc·Ö±ð±íʾa¡¢b¡¢121212cÉϵĸߣ©£»

£¨2£©¡÷£½absinC£½bcsinA£½acsinB£» a2sinBsinCb2sinCsinAc2sinAsinB£¨3£©¡÷£½£½£½£» 2sin(B?C)2sin(C?A)2sin(A?B)121212£¨4£©¡÷£½2R2sinAsinBsinC¡££¨RΪÍâ½ÓÔ²°ë¾¶£© £¨5£©¡÷£½abc£» 4R?12??£¨6£©¡÷£½s(s?a)(s?b)(s?c)£»??s?(a?b?c)?£» £¨7£©¡÷£½r¡¤s¡£ 4£®½âÈý½ÇÐΣºÓÉÈý½ÇÐεÄÁù¸öÔªËØ£¨¼´ÈýÌõ±ßºÍÈý¸öÄڽǣ©ÖеÄÈý¸öÔªËØ£¨ÆäÖÐÖÁÉÙÓÐÒ»¸öÊDZߣ©ÇóÆäËûÎ´ÖªÔªËØµÄÎÊÌâ½Ð×ö½âÈý½ÇÐΣ®¹ãÒ嵨£¬ÕâÀïËù˵µÄÔªËØ»¹¿ÉÒÔ°üÀ¨Èý½ÇÐεĸߡ¢ÖÐÏß¡¢½Çƽ·ÖÏßÒÔ¼°ÄÚÇÐÔ²°ë¾¶¡¢Íâ½ÓÔ²°ë¾¶¡¢Ãæ»ýµÈµÈ£®½âÈý½ÇÐεÄÎÊÌâÒ»°ã¿É·ÖΪÏÂÃæÁ½ÖÖÇéÐΣºÈô¸ø³öµÄÈý½ÇÐÎÊÇÖ±½ÇÈý½ÇÐΣ¬Ôò³ÆÎª½âÖ±½ÇÈý½ÇÐΣ»Èô¸ø³öµÄÈý½ÇÐÎÊÇбÈý½ÇÐΣ¬Ôò³ÆÎª½âбÈý½ÇÐΡ£ ½âбÈý½ÇÐεÄÖ÷ÒªÒÀ¾ÝÊÇ£º Éè¡÷ABCµÄÈý±ßΪa¡¢b¡¢c£¬¶ÔÓ¦µÄÈý¸ö½ÇΪA¡¢B¡¢C¡£ £¨1£©½ÇÓë½Ç¹ØÏµ£ºA+B+C = ¦Ð£» £¨2£©±ßÓë±ß¹ØÏµ£ºa + b > c£¬b + c > a£¬c + a > b£¬a£­b < c£¬b£­c < a£¬c£­a > b£» £¨3£©±ßÓë½Ç¹ØÏµ£º ÕýÏÒ¶¨Àí abc???2R£¨RsinAsinBsinCΪÍâ½ÓÔ²°ë¾¶£©£» ÓàÏÒ¶¨Àí c2 = a2+b2£­2bccosC£¬b2 = a2+c2£­2accosB£¬

a2 = b2+c2£­2bccosA£» ËüÃǵıäÐÎÐÎʽÓУºa = 2R sinA£¬b2?c2?a2cosA?2bcsinAa?sinBb£¬¡£ 5£®Èý½ÇÐÎÖеÄÈý½Ç±ä»» Èý½ÇÐÎÖеÄÈý½Ç±ä»»£¬³ýÁËÓ¦ÓÃÉÏÊö¹«Ê½ºÍÉÏÊö±ä»»·½·¨Í⣬»¹Òª×¢ÒâÈý½ÇÐÎ×ÔÉíµÄÌØµã¡£ £¨1£©½ÇµÄ±ä»» ÒòΪÔÚ¡÷ABCÖУ¬A+B+C=¦Ð£¬ËùÒÔsin(A+B)=sinC£»cos(A+B)=sin£­cosC£»tan(A+B)=£­tanC¡£A?BCA?BC?cos,cos?sin£» 2222£¨2£©Èý½ÇÐαߡ¢½Ç¹ØÏµ¶¨Àí¼°Ãæ»ý¹«Ê½£¬ÕýÏÒ¶¨Àí£¬ÓàÏÒ¶¨Àí¡£ rΪÈý½ÇÐÎÄÚÇÐÔ²°ë¾¶£¬pΪÖܳ¤Ö®°ë¡£ £¨3£©ÔÚ¡÷ABCÖУ¬Êì¼Ç²¢»áÖ¤Ã÷£º¡ÏA£¬¡ÏB£¬¡ÏC³ÉµÈ²îÊýÁеijä·Ö±ØÒªÌõ¼þÊÇ¡ÏB=60¡ã£»¡÷ABCÊÇÕýÈý½ÇÐεijä·Ö±ØÒªÌõ¼þÊÇ¡ÏA£¬¡ÏB£¬¡ÏC³ÉµÈ²îÊýÁÐÇÒa£¬b£¬c³ÉµÈ±ÈÊýÁС£ ¶þ£®µäÀý·ÖÎö (2012¡¤Õã½­¸ß¿¼)ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÇÒbsin A£½3acos B. (1)Çó½ÇBµÄ´óС£» (2)Èôb£½3£¬sin C£½2sin A£¬Çóa£¬cµÄÖµ£® (1)ÓÉbsin A£½3acos B¼°ÕýÏÒ¶¨Àí