(ÍêÕû°æ)2017Öп¼ÊýѧһÂÖ¸´Ï°½Ì°¸(ÍêÕû°æ) ÏÂÔØ±¾ÎÄ

µÚ8¿Î ·Öʽ·½³ÌÓë¶þ´Î¸ùʽ·½³Ì

¡¼ÖªÊ¶µã¡½

·Öʽ·½³Ì¡¢¶þ´Î¸ùʽµÄ¸ÅÄî¡¢½â·¨Ë¼Â·¡¢½â·¨¡¢Ôö¸ù ¡¼´ó¸ÙÒªÇó¡½

Á˽â·Öʽ·½³Ì¡¢¶þ´Î¸ùʽ·½³ÌµÄ¸ÅÄî¡£ÕÆÎհѼòµ¥µÄ·Öʽ·½³Ì¡¢¶þ´Î¸ùʽ·½³Ìת»¯ÎªÒ»ÔªÒ»´Î·½³Ì¡¢Ò»Ôª¶þ´Î·½³ÌµÄÒ»°ã·½·¨£¬»áÓû»Ôª·¨½â·½³Ì£¬»á¼ìÑé¡£

ÄÚÈÝ·ÖÎö

1£®·Öʽ·½³ÌµÄ½â·¨ (1)È¥·Öĸ·¨

ÓÃÈ¥·Öĸ·¨½â·Öʽ·½³ÌµÄÒ»°ã²½ÖèÊÇ£º

£¨i)ÔÚ·½³ÌµÄÁ½±ß¶¼³ËÒÔ×î¼ò¹«·Öĸ£¬Ô¼È¥·Öĸ£¬»¯³ÉÕûʽ·½³Ì£» (ii)½âÕâ¸öÕûʽ·½³Ì£»

(iii)°ÑÕûʽ·½³ÌµÄ¸ù´úÈë×î¼ò¹«·Öĸ£¬¿´½á¹ûÊDz»ÊÇÁ㣬ʹ×î¼ò¹«·Öĸ²»ÎªÁãµÄ¸ùÊÇÔ­·½³ÌµÄ¸ù£¬Ê¹×î¼ò¹«·ÖĸΪÁãµÄ¸ùÊÇÔö¸ù£¬±ØÐëÉáÈ¥.

ÔÚÉÏÊö²½ÖèÖУ¬È¥·ÖĸÊǹؼü£¬Ñé¸ùÖ»Ðè´úÈëÔ±¼ò¹«·Öĸ. (2)»»Ôª·¨

Óû»Ôª·¨½â·Öʽ·½³Ì£¬Ò²¾ÍÊǰÑÊʵ±µÄ·Öʽ»»³ÉеÄδ֪Êý£¬Çó³öеÄδ֪ÊýºóÇó³öÔ­À´µÄδ֪Êý£®

2£®¶þ´Î¸ùʽ·½³ÌµÄ½â·¨ (1)Á½±ßƽ·½·¨

ÓÃÁ½±ßƽ·½·¨½âÎÞÀí·½³ÌµÄ¡ª°ã²½ÖèÊÇ£º

(i)·½³ÌÁ½±ß¶¼Æ½·½£¬È¥µô¸ùºÅ£¬»¯³ÉÓÐÀí·½³Ì£» (ii)½âÕâ¸öÓÐÀí·½³Ì£»

(iii)°ÑÓÐÀí·½³ÌµÄ¸ù´úÈëÔ­·½³Ì½øÐмìÑ飬Èç¹ûÊʺϣ¬¾ÍÊÇÔ­·½³ÌµÄ¸ù£¬Èç¹û²»Êʺϣ¬¾ÍÊÇÔö¸ù£¬±ØÐëÉáÈ¥£®

ÔÚÉÏÊö²½ÖèÖУ¬Á½±ßƽ·½Êǹؼü£¬Ñé¸ù±ØÐë´úÈëÔ­·½³Ì½øÐУ® (2)»»Ôª·¨

Óû»Ôª·¨½âÎÞÀí·½³Ì£¬¾ÍÊǰÑÊʵ±µÄ¸ùºÅÏĄ̂ÓÐδ֪ÊýµÄʽ×Ó»»³ÉеÄδ֪Êý£¬Çó³öеÄδ֪ÊýºóÔÙÇóÔ­À´µÄδ֪Êý£® ¡¼¿¼²éÖØµãÓë³£¼ûÌâÐÍ¡½

¿¼²é»»Ôª·¨½â·Öʽ·½³ÌºÍ¶þ´Î¸ùʽ·½³Ì£¬ÓÐÒ»²¿·ÖÖ»¿¼²é»»ÔªµÄÄÜÁ¦£¬³£³öÏÖ ÔÚÑ¡ÔñÌâÖÐÁíÒ»²¿·ÖϰÌ⿼²éÍêÕûµÄ½âÌâÄÜÁ¦£¬Ï°Ìâ³öÏÖÔÚÖеµ½â´ðÌâÖС£

¿¼ÌâÀàÐÍ

3xx£­13x

1£®£¨1£©Óû»Ôª·¨½â·Öʽ·½³Ì2 £« £½3ʱ£¬Éè2 £½y£¬Ô­·½³Ì±äÐÎΪ£¨ £©

x£­13xx£­1 £¨A£©y£­3y£«1£½0£¨B£©y£«3y£«1£½0£¨C£©y£«3y£­1£½0£¨D£©y£­y£«3£½0

2£®Óû»Ôª·¨½â·½³Ìx£«8x£«x£«8x£­11 £½23£¬ÈôÉèy£½x£«8x£­11 £¬ÔòÔ­·½³Ì¿É»¯Îª

£¨ £©

2222

£¨A£©y£«y£«12£½0£¨B£©y£«y£­23£½0£¨C£©y£«y£­12£½0£¨D£©y£«y£­34=0 2xm£«1x£«1

3£®Èô½â·Öʽ·½³Ì £­2 £½ ²úÉúÔö¸ù£¬ÔòmµÄÖµÊÇ£¨ £©

x£­1x£«xx £¨A£©£­1»ò£­2 £¨B£©£­1»ò2 £¨C£©1»ò2 £¨D£©1»ò£­2

2

2

2

2

2

2

2

2

29

41

4£®½â·½³Ì £­ £½1ʱ£¬Ð轫·½³ÌÁ½±ß¶¼³ËÒÔͬһ¸öÕûʽ£¨¸÷·ÖĸµÄ×î¼ò¹«·Öĸ£©£¬Ô¼

xx£­1È¥·Öĸ£¬Ëù³ËµÄÕâ¸öÕûʽΪ£¨ £©

£¨A£©x£­1 £¨B£©x£¨x£­1£© £¨C£©x £¨D£©x£«1

5£®ÏÈÔĶÁÏÂÃæ½â·½³Ìx£«x£­2 £½2µÄ¹ý³Ì£¬È»ºóÌî¿Õ. ½â£º£¨µÚÒ»²½£©½«·½³ÌÕûÀíΪx£­2£«x£­2 £½0£»£¨µÚ¶þ²½£©Éèy£½x£­2 £¬Ô­·½³Ì¿É»¯Îª2

y£«y£½0£»£¨µÚÈý²½£©½âÕâ¸ö·½³ÌµÄ y1£½0£¬y2£½£­1£¨µÚËIJ½£©µ±y£½0ʱ£¬x£­2 £½0£»½âµÃ x£½2£¬µ±y£½£­1ʱ£¬x£­2 £½£­1£¬·½³ÌÎ޽⣻£¨µÚÎå²½£©ËùÒÔx£½2ÊÇÔ­·½³ÌµÄ¸ùÒÔÉϽâÌâ¹ý³ÌÖУ¬µÚ¶þ²½Óõķ½·¨Êǣߣߣߣ¬µÚËIJ½ÖУ¬Äܹ»Åж¨·½³Ìx£­2 £½£­1ÎÞ½âÔ­¸ù¾ÝÊǣߣߡ£ÉÏÊö½âÌâ¹ý³Ì²»ÍêÕû£¬È±ÉÙµÄÒ»²½Êǣߣߣߡ£ ¿¼µãѵÁ·£º

1£® ¸ø³öÏÂÁÐÁù¸ö·½³Ì£º1£©x£­2x£«2£½0 2£©x£­2 £½1£­x 3£©x£­3 £«x£­2 £½0 4£©

111x

x£«1 £«2£½0 5£© £« £½0 6£© £«1£½ ¾ßÖÐÓÐʵÊý½âµÄ·½³ÌÓУ¨ £©

xx£­1x£­1x£­1£¨A£©0¸ö £¨B£©1¸ö £¨C£©2¸ö £¨D£©¶àÓÚ2¸ö 2£® ·½³Ì

2x1 £­1£½ µÄ½âÊÇ£¨ £© 2

x£­4x£«2

2

£¨A£©£­1 £¨B£©2»ò£­1 £¨C£©£­2»ò3 £¨D£©3

x£­3m

3£® µ±·Öĸ½âx µÄ·½³Ì £½ ʱ²úÉúÔö¸ù£¬ÔòmµÄÖµµÈÓÚ£¨ £©

x£­1x£­1 £¨A£©£­2 £¨B£©£­1 £¨C£©1. £¨D£©2 4£® 5£® 6£® 7£®

·½³Ì2x£­3 £­x£«1 £½0µÄ½âÊǣߣߣߣߣߣߣߣߣߡ£ ÄÜʹ£¨x£­5£©x£­7 £½0³ÉÁ¢µÄxÊǣߣߣߣߣߣߡ£

¹ØÓÚxµÄ·½³Ìm(m£­1)x£«3 £½2x£­15ÊǸùʽ·½³Ì£¬ÔòmµÄȡֵ·¶Î§Êǣߣߣߣߣߡ£ ½âÏÂÁз½³Ì£º

2

12x£«1343xx£­15

£¨1£©2 £­ £½ £¨2£©2 £« £½

2x£­7x£«51£­x 2x£­5 x£­13x 21712

£¨3£©x£«2 £­ £¨x£­ £©£«1£½0

x2x½âÌâÖ¸µ¼£º

1£®½âÏÂÁз½³Ì£º

2x£­21

£¨1£©x£«2 £½x £¨2£©2 £« £½2

x£­9 x(x£­3) x£«3x62

£¨3£©x£«2x£«2£½x£­8 £½32 2 £¨4£©3x£«2 £­ £¨x£«1£©¶ÀÁ¢ÑµÁ·

12

1£®·½³Ìx(x£«1) £½0µÄ½âÊÇ_______. ·½³Ì2x£«3 £½£­xµÄ½âÊÇ_______£¬·½³Ì

x£­1£½

4

µÄ½âÊÇ___________ . x£«2

xx2

2£®Éèy£½ ____ʱ£¬·Öʽ·½³Ì£¨ £©£«5£¨ £©£«6£½0¿Éת»¯Îª__________.

x£­1 x£­13£®Óû»Ôª·¨½â·½³Ì2x£­3x£«43x£­2x£«5 £«1£½0¿ÉÉèy £½_________.´Ó¶ø°Ñ·½³Ì»¯Îª

_____________.

30

2

2

4£®ÏÂÁз½³ÌÓÐʵÊý½âµÄÊÇ£¨ £©

£¨A£©x£«2 £«5£½4 £¨B£©3£­x £«x£­3 £½0

£¨C£©x2

£­2x£«4£½0 £¨D£©236 x£«1 £«x£­1 £½ x2£­1

5£®½âÏÂÁз½³Ì.

(1) 1 x£­2 =x£«2x£«411

x2£­4 £¨2£© x2£«2x £­ x£«2 £½ x £«1

£¨3£©a£­x4£¨b£«x£© b£«x £½5£­a£­x (a£«b¡Ù0) £¨4£©2£­x £«5£­4x £½2

(5) 2x2£­4x£­3x2£­2x£­4 £½10 £¨6£©4£¨x2

£«11 x2 £©£­5£¨x£­x £©£­14£½0

£¨7£©3x2

£«15x£«23x2£«15x£«1 £½2 (8)

x£«2

x£­15

x£­1 £« x£«2 £½ 2

6£®Èô¹ØÓÚxµÄ·½³Ìxx-2 - m+1x+1

x2+2 = x

+1²úÉúÔö¸ù£¬ÇómµÄÖµ¡£

mΪºÎֵʱ£¬¹ØÓÚxµÄ·½³Ì2x-2 - mx3

x2-4 = x+2 »á²úÉúÔö¸ù¡£

7. µ±aΪºÎֵʱ£¬·½³Ìx-18x+ax

x - 2x(x-1) + x-1 =0Ö»ÓÐÒ»¸öʵÊý¸ù¡£

·½³Ìxx+1 + x+1x = - 4x+a

x(x+1) Ö»ÓÐÒ»¸öʵÊý¸ù£¬ÇóaµÄÖµ

8£®µ±mΪºÎֵʱ£¬·½³Ì36x+mx + x-1 - x(x-1)

= 0Óнâ

31

µÚ9¿Î ·½³Ì×é

¡¼ÖªÊ¶µã¡½

·½³Ì×é¡¢·½³Ì×éµÄ½â¡¢½â·½³Ì×é¡¢¶þÔªÒ»´Î·½³Ì£¨×飩¡¢ÈýÔªÒ»´Î·½³Ì£¨×飩¡¢¶þÔª¶þ´Î·½³Ì£¨×飩¡¢½â·½³Ì×éµÄ»ù±¾Ë¼Ïë¡¢½â·½³Ì×éµÄ³£¼û·½·¨¡£ ¡¼´ó¸ÙÒªÇó¡½

Á˽ⷽ³Ì×éºÍËüµÄ½â¡¢½â·½³Ì×éµÈ¸ÅÄÁé»îÔËÓôúÈë·¨¡¢¼Ó¼õ·¨½â¶þÔªÒ»´Î·½³Ì×飬²¢»á½â¼òµ¥µÄÈýÔªÒ»´Î·½³Ì×é¡£ÕÆÎÕÓÉÒ»¸ö¶þÔªÒ»´Î·½³ÌºÍÒ»¸ö¶þÔª¶þ´Î·½³Ì×é³ÉµÄ·½³Ì×éµÄ½â·¨£¬ÕÆÎÕÓÉÒ»¸ö¶þÔª¶þ´Î·½³ÌºÍÒ»¸ö¿ÉÒÔ·Ö½âΪÁ½¸ö¶þÔªÒ»´Î·½³ÌµÄ¶þÔª¶þ´Î·½³Ì×é³ÉµÄ·½³Ì×éµÄ½â·¨¡£

ÄÚÈÝ·ÖÎö

1. ·½³Ì×éµÄÓйظÅÄî

º¬ÓÐÁ½¸öδ֪Êý²¢ÇÒδ֪ÏîµÄ´ÎÊýÊÇ1µÄ·½³Ì½Ð×ö¶þÔªÒ»´Î·½³Ì£®Á½¸ö¶þÔª¡ª´Î·½³ÌºÏÔÚÒ»Æð¾Í×é³ÉÁËÒ»¸ö¡ª¡£ÔªÒ»´Î·½³Ì×飮¶þÔªÒ»´Î·½³Ì×é¿É»¯Îª ??ax?by?c, (a£¬b£¬m¡¢n²»È«ÎªÁã)µÄÐÎʽ.

?mx?ny?rʹ·½³Ì×éÖеĸ÷¸ö·½³ÌµÄ×ó¡¢ÓÒÁ½±ß¶¼ÏàµÈµÄδ֪ÊýµÄÖµ£¬½Ð×ö·½³Ì×éµÄ½â£® 2.Ò»´Î·½³Ì×éµÄ½â·¨ºÍÓ¦ÓÃ

½â¶þÔª(ÈýÔª)Ò»´Î·½³Ì×éµÄÒ»°ã·½·¨ÊÇ´úÈëÏûÔª·¨ºÍ¼Ó¼õÏûÔª·¨£® 3. ¼òµ¥µÄ¶þÔª¶þ´Î·½³Ì×éµÄ½â·¨

(1)¿ÉÓôúÈë·¨½âÒ»¸ö¶þÔª¶þ´Î·½³ÌºÍÒ»¸ö¶þÔªÒ»´Î·½³Ì×é³ÉµÄ·½³Ì×飮 £¨2)¶ÔÓÚÁ½¸ö¶þÔªÈý´Î·½³Ì×é³ÉµÄ·½³Ì×飬Èç¹ûÆäÖÐÒ»¸ö¿ÉÒÔ·Ö½âÒòʽ£¬ÄÇôԭ·½³Ì×é¿ÉÒÔת»¯ÎªÁ½¸öÓÉÒ»¸ö¶þÔª¶þ´Î·½³ÌºÍÒ»¸ö¶þÔªÒ»´Î·½³Ì×é³ÉµÄ·½³Ì×éÀ´½â£® ¡¼¿¼²éÖØµãÓë³£¼ûÌâÐÍ¡½

¿¼²é¶þÔªÒ»´Î·½³Ì×é¡¢¶þÔª¶þ´Î·½³Ì×éµÄÄÜÁ¦£¬ÓйØÊÔÌâ¶àΪ½â´ðÌ⣬Ҳ³öÏÖÔÚÑ¡ÔñÌâ¡¢Ìî¿ÕÌâÖУ¬½üÄêµÄÖп¼ÊÔÌâÖгöÏÖÁËÓйصÄÔĶÁÀí½âÌâ¡£

¿¼ÌâÀàÐÍ

22??6x-5xy+y=0 ?1?1.·½³Ì×é ?µÄ½âµÄ¸öÊý£¨ £© 2??y=x+6x+4 ?2? A.4 B.3 C.2 D.1

?ax+by=4?x=22£®·½³Ì×é? µÄ½âÊÇ? £¬Ôòa+b=

bx+ay=5y=1??3£®Èô·½³Ì×é ?y=mx+2 ?1?ûÓÐʵÊý½â£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨ £© 2y+4x+1=2y 2?????? A.m>1 B.m<-1 C.m<1ÇÒm¡Ù0 D.m>-1ÇÒm¡Ù0

22??x-3xy+2y=0 ?1?4.ÔĶÁ£º½â·½³Ì×é? 22 x+y=10 2????½â£ºÓÉ¢ÙµÄ(x-y)(x-2y)=0Ôòx-y=0»òx-2y=0 £¨µÚÒ»²½£©

32