µÚ8¿Î ·Öʽ·½³ÌÓë¶þ´Î¸ùʽ·½³Ì
¡¼ÖªÊ¶µã¡½
·Öʽ·½³Ì¡¢¶þ´Î¸ùʽµÄ¸ÅÄî¡¢½â·¨Ë¼Â·¡¢½â·¨¡¢Ôö¸ù ¡¼´ó¸ÙÒªÇó¡½
Á˽â·Öʽ·½³Ì¡¢¶þ´Î¸ùʽ·½³ÌµÄ¸ÅÄî¡£ÕÆÎհѼòµ¥µÄ·Öʽ·½³Ì¡¢¶þ´Î¸ùʽ·½³Ìת»¯ÎªÒ»ÔªÒ»´Î·½³Ì¡¢Ò»Ôª¶þ´Î·½³ÌµÄÒ»°ã·½·¨£¬»áÓû»Ôª·¨½â·½³Ì£¬»á¼ìÑé¡£
ÄÚÈÝ·ÖÎö
1£®·Öʽ·½³ÌµÄ½â·¨ (1)È¥·Öĸ·¨
ÓÃÈ¥·Öĸ·¨½â·Öʽ·½³ÌµÄÒ»°ã²½ÖèÊÇ£º
£¨i)ÔÚ·½³ÌµÄÁ½±ß¶¼³ËÒÔ×î¼ò¹«·Öĸ£¬Ô¼È¥·Öĸ£¬»¯³ÉÕûʽ·½³Ì£» (ii)½âÕâ¸öÕûʽ·½³Ì£»
(iii)°ÑÕûʽ·½³ÌµÄ¸ù´úÈë×î¼ò¹«·Öĸ£¬¿´½á¹ûÊDz»ÊÇÁ㣬ʹ×î¼ò¹«·Öĸ²»ÎªÁãµÄ¸ùÊÇÔ·½³ÌµÄ¸ù£¬Ê¹×î¼ò¹«·ÖĸΪÁãµÄ¸ùÊÇÔö¸ù£¬±ØÐëÉáÈ¥.
ÔÚÉÏÊö²½ÖèÖУ¬È¥·ÖĸÊǹؼü£¬Ñé¸ùÖ»Ðè´úÈëÔ±¼ò¹«·Öĸ. (2)»»Ôª·¨
Óû»Ôª·¨½â·Öʽ·½³Ì£¬Ò²¾ÍÊǰÑÊʵ±µÄ·Öʽ»»³ÉеÄδ֪Êý£¬Çó³öеÄδ֪ÊýºóÇó³öÔÀ´µÄδ֪Êý£®
2£®¶þ´Î¸ùʽ·½³ÌµÄ½â·¨ (1)Á½±ßƽ·½·¨
ÓÃÁ½±ßƽ·½·¨½âÎÞÀí·½³ÌµÄ¡ª°ã²½ÖèÊÇ£º
(i)·½³ÌÁ½±ß¶¼Æ½·½£¬È¥µô¸ùºÅ£¬»¯³ÉÓÐÀí·½³Ì£» (ii)½âÕâ¸öÓÐÀí·½³Ì£»
(iii)°ÑÓÐÀí·½³ÌµÄ¸ù´úÈëÔ·½³Ì½øÐмìÑ飬Èç¹ûÊʺϣ¬¾ÍÊÇÔ·½³ÌµÄ¸ù£¬Èç¹û²»Êʺϣ¬¾ÍÊÇÔö¸ù£¬±ØÐëÉáÈ¥£®
ÔÚÉÏÊö²½ÖèÖУ¬Á½±ßƽ·½Êǹؼü£¬Ñé¸ù±ØÐë´úÈëÔ·½³Ì½øÐУ® (2)»»Ôª·¨
Óû»Ôª·¨½âÎÞÀí·½³Ì£¬¾ÍÊǰÑÊʵ±µÄ¸ùºÅÏĄ̂ÓÐδ֪ÊýµÄʽ×Ó»»³ÉеÄδ֪Êý£¬Çó³öеÄδ֪ÊýºóÔÙÇóÔÀ´µÄδ֪Êý£® ¡¼¿¼²éÖØµãÓë³£¼ûÌâÐÍ¡½
¿¼²é»»Ôª·¨½â·Öʽ·½³ÌºÍ¶þ´Î¸ùʽ·½³Ì£¬ÓÐÒ»²¿·ÖÖ»¿¼²é»»ÔªµÄÄÜÁ¦£¬³£³öÏÖ ÔÚÑ¡ÔñÌâÖÐÁíÒ»²¿·ÖϰÌ⿼²éÍêÕûµÄ½âÌâÄÜÁ¦£¬Ï°Ìâ³öÏÖÔÚÖеµ½â´ðÌâÖС£
¿¼ÌâÀàÐÍ
3xx£13x
1£®£¨1£©Óû»Ôª·¨½â·Öʽ·½³Ì2 £« £½3ʱ£¬Éè2 £½y£¬Ô·½³Ì±äÐÎΪ£¨ £©
x£13xx£1 £¨A£©y£3y£«1£½0£¨B£©y£«3y£«1£½0£¨C£©y£«3y£1£½0£¨D£©y£y£«3£½0
2£®Óû»Ôª·¨½â·½³Ìx£«8x£«x£«8x£11 £½23£¬ÈôÉèy£½x£«8x£11 £¬ÔòÔ·½³Ì¿É»¯Îª
£¨ £©
2222
£¨A£©y£«y£«12£½0£¨B£©y£«y£23£½0£¨C£©y£«y£12£½0£¨D£©y£«y£34=0 2xm£«1x£«1
3£®Èô½â·Öʽ·½³Ì £2 £½ ²úÉúÔö¸ù£¬ÔòmµÄÖµÊÇ£¨ £©
x£1x£«xx £¨A£©£1»ò£2 £¨B£©£1»ò2 £¨C£©1»ò2 £¨D£©1»ò£2
2
2
2
2
2
2
2
2
29
41
4£®½â·½³Ì £ £½1ʱ£¬Ð轫·½³ÌÁ½±ß¶¼³ËÒÔͬһ¸öÕûʽ£¨¸÷·ÖĸµÄ×î¼ò¹«·Öĸ£©£¬Ô¼
xx£1È¥·Öĸ£¬Ëù³ËµÄÕâ¸öÕûʽΪ£¨ £©
£¨A£©x£1 £¨B£©x£¨x£1£© £¨C£©x £¨D£©x£«1
5£®ÏÈÔĶÁÏÂÃæ½â·½³Ìx£«x£2 £½2µÄ¹ý³Ì£¬È»ºóÌî¿Õ. ½â£º£¨µÚÒ»²½£©½«·½³ÌÕûÀíΪx£2£«x£2 £½0£»£¨µÚ¶þ²½£©Éèy£½x£2 £¬Ô·½³Ì¿É»¯Îª2
y£«y£½0£»£¨µÚÈý²½£©½âÕâ¸ö·½³ÌµÄ y1£½0£¬y2£½£1£¨µÚËIJ½£©µ±y£½0ʱ£¬x£2 £½0£»½âµÃ x£½2£¬µ±y£½£1ʱ£¬x£2 £½£1£¬·½³ÌÎ޽⣻£¨µÚÎå²½£©ËùÒÔx£½2ÊÇÔ·½³ÌµÄ¸ùÒÔÉϽâÌâ¹ý³ÌÖУ¬µÚ¶þ²½Óõķ½·¨Êǣߣߣߣ¬µÚËIJ½ÖУ¬Äܹ»Åж¨·½³Ìx£2 £½£1ÎÞ½âÔ¸ù¾ÝÊǣߣߡ£ÉÏÊö½âÌâ¹ý³Ì²»ÍêÕû£¬È±ÉÙµÄÒ»²½Êǣߣߣߡ£ ¿¼µãѵÁ·£º
1£® ¸ø³öÏÂÁÐÁù¸ö·½³Ì£º1£©x£2x£«2£½0 2£©x£2 £½1£x 3£©x£3 £«x£2 £½0 4£©
111x
x£«1 £«2£½0 5£© £« £½0 6£© £«1£½ ¾ßÖÐÓÐʵÊý½âµÄ·½³ÌÓУ¨ £©
xx£1x£1x£1£¨A£©0¸ö £¨B£©1¸ö £¨C£©2¸ö £¨D£©¶àÓÚ2¸ö 2£® ·½³Ì
2x1 £1£½ µÄ½âÊÇ£¨ £© 2
x£4x£«2
2
£¨A£©£1 £¨B£©2»ò£1 £¨C£©£2»ò3 £¨D£©3
x£3m
3£® µ±·Öĸ½âx µÄ·½³Ì £½ ʱ²úÉúÔö¸ù£¬ÔòmµÄÖµµÈÓÚ£¨ £©
x£1x£1 £¨A£©£2 £¨B£©£1 £¨C£©1. £¨D£©2 4£® 5£® 6£® 7£®
·½³Ì2x£3 £x£«1 £½0µÄ½âÊǣߣߣߣߣߣߣߣߣߡ£ ÄÜʹ£¨x£5£©x£7 £½0³ÉÁ¢µÄxÊǣߣߣߣߣߣߡ£
¹ØÓÚxµÄ·½³Ìm(m£1)x£«3 £½2x£15ÊǸùʽ·½³Ì£¬ÔòmµÄȡֵ·¶Î§Êǣߣߣߣߣߡ£ ½âÏÂÁз½³Ì£º
2
12x£«1343xx£15
£¨1£©2 £ £½ £¨2£©2 £« £½
2x£7x£«51£x 2x£5 x£13x 21712
£¨3£©x£«2 £ £¨x£ £©£«1£½0
x2x½âÌâÖ¸µ¼£º
1£®½âÏÂÁз½³Ì£º
2x£21
£¨1£©x£«2 £½x £¨2£©2 £« £½2
x£9 x(x£3) x£«3x62
£¨3£©x£«2x£«2£½x£8 £½32 2 £¨4£©3x£«2 £ £¨x£«1£©¶ÀÁ¢ÑµÁ·
12
1£®·½³Ìx(x£«1) £½0µÄ½âÊÇ_______. ·½³Ì2x£«3 £½£xµÄ½âÊÇ_______£¬·½³Ì
x£1£½
4
µÄ½âÊÇ___________ . x£«2
xx2
2£®Éèy£½ ____ʱ£¬·Öʽ·½³Ì£¨ £©£«5£¨ £©£«6£½0¿Éת»¯Îª__________.
x£1 x£13£®Óû»Ôª·¨½â·½³Ì2x£3x£«43x£2x£«5 £«1£½0¿ÉÉèy £½_________.´Ó¶ø°Ñ·½³Ì»¯Îª
_____________.
30
2
2
4£®ÏÂÁз½³ÌÓÐʵÊý½âµÄÊÇ£¨ £©
£¨A£©x£«2 £«5£½4 £¨B£©3£x £«x£3 £½0
£¨C£©x2
£2x£«4£½0 £¨D£©236 x£«1 £«x£1 £½ x2£1
5£®½âÏÂÁз½³Ì.
(1) 1 x£2 =x£«2x£«411
x2£4 £¨2£© x2£«2x £ x£«2 £½ x £«1
£¨3£©a£x4£¨b£«x£© b£«x £½5£a£x (a£«b¡Ù0) £¨4£©2£x £«5£4x £½2
(5) 2x2£4x£3x2£2x£4 £½10 £¨6£©4£¨x2
£«11 x2 £©£5£¨x£x £©£14£½0
£¨7£©3x2
£«15x£«23x2£«15x£«1 £½2 (8)
x£«2
x£15
x£1 £« x£«2 £½ 2
6£®Èô¹ØÓÚxµÄ·½³Ìxx-2 - m+1x+1
x2+2 = x
+1²úÉúÔö¸ù£¬ÇómµÄÖµ¡£
mΪºÎֵʱ£¬¹ØÓÚxµÄ·½³Ì2x-2 - mx3
x2-4 = x+2 »á²úÉúÔö¸ù¡£
7. µ±aΪºÎֵʱ£¬·½³Ìx-18x+ax
x - 2x(x-1) + x-1 =0Ö»ÓÐÒ»¸öʵÊý¸ù¡£
·½³Ìxx+1 + x+1x = - 4x+a
x(x+1) Ö»ÓÐÒ»¸öʵÊý¸ù£¬ÇóaµÄÖµ
8£®µ±mΪºÎֵʱ£¬·½³Ì36x+mx + x-1 - x(x-1)
= 0Óнâ
31
µÚ9¿Î ·½³Ì×é
¡¼ÖªÊ¶µã¡½
·½³Ì×é¡¢·½³Ì×éµÄ½â¡¢½â·½³Ì×é¡¢¶þÔªÒ»´Î·½³Ì£¨×飩¡¢ÈýÔªÒ»´Î·½³Ì£¨×飩¡¢¶þÔª¶þ´Î·½³Ì£¨×飩¡¢½â·½³Ì×éµÄ»ù±¾Ë¼Ïë¡¢½â·½³Ì×éµÄ³£¼û·½·¨¡£ ¡¼´ó¸ÙÒªÇó¡½
Á˽ⷽ³Ì×éºÍËüµÄ½â¡¢½â·½³Ì×éµÈ¸ÅÄÁé»îÔËÓôúÈë·¨¡¢¼Ó¼õ·¨½â¶þÔªÒ»´Î·½³Ì×飬²¢»á½â¼òµ¥µÄÈýÔªÒ»´Î·½³Ì×é¡£ÕÆÎÕÓÉÒ»¸ö¶þÔªÒ»´Î·½³ÌºÍÒ»¸ö¶þÔª¶þ´Î·½³Ì×é³ÉµÄ·½³Ì×éµÄ½â·¨£¬ÕÆÎÕÓÉÒ»¸ö¶þÔª¶þ´Î·½³ÌºÍÒ»¸ö¿ÉÒÔ·Ö½âΪÁ½¸ö¶þÔªÒ»´Î·½³ÌµÄ¶þÔª¶þ´Î·½³Ì×é³ÉµÄ·½³Ì×éµÄ½â·¨¡£
ÄÚÈÝ·ÖÎö
1. ·½³Ì×éµÄÓйظÅÄî
º¬ÓÐÁ½¸öδ֪Êý²¢ÇÒδ֪ÏîµÄ´ÎÊýÊÇ1µÄ·½³Ì½Ð×ö¶þÔªÒ»´Î·½³Ì£®Á½¸ö¶þÔª¡ª´Î·½³ÌºÏÔÚÒ»Æð¾Í×é³ÉÁËÒ»¸ö¡ª¡£ÔªÒ»´Î·½³Ì×飮¶þÔªÒ»´Î·½³Ì×é¿É»¯Îª ??ax?by?c, (a£¬b£¬m¡¢n²»È«ÎªÁã)µÄÐÎʽ.
?mx?ny?rʹ·½³Ì×éÖеĸ÷¸ö·½³ÌµÄ×ó¡¢ÓÒÁ½±ß¶¼ÏàµÈµÄδ֪ÊýµÄÖµ£¬½Ð×ö·½³Ì×éµÄ½â£® 2.Ò»´Î·½³Ì×éµÄ½â·¨ºÍÓ¦ÓÃ
½â¶þÔª(ÈýÔª)Ò»´Î·½³Ì×éµÄÒ»°ã·½·¨ÊÇ´úÈëÏûÔª·¨ºÍ¼Ó¼õÏûÔª·¨£® 3. ¼òµ¥µÄ¶þÔª¶þ´Î·½³Ì×éµÄ½â·¨
(1)¿ÉÓôúÈë·¨½âÒ»¸ö¶þÔª¶þ´Î·½³ÌºÍÒ»¸ö¶þÔªÒ»´Î·½³Ì×é³ÉµÄ·½³Ì×飮 £¨2)¶ÔÓÚÁ½¸ö¶þÔªÈý´Î·½³Ì×é³ÉµÄ·½³Ì×飬Èç¹ûÆäÖÐÒ»¸ö¿ÉÒÔ·Ö½âÒòʽ£¬ÄÇôԷ½³Ì×é¿ÉÒÔת»¯ÎªÁ½¸öÓÉÒ»¸ö¶þÔª¶þ´Î·½³ÌºÍÒ»¸ö¶þÔªÒ»´Î·½³Ì×é³ÉµÄ·½³Ì×éÀ´½â£® ¡¼¿¼²éÖØµãÓë³£¼ûÌâÐÍ¡½
¿¼²é¶þÔªÒ»´Î·½³Ì×é¡¢¶þÔª¶þ´Î·½³Ì×éµÄÄÜÁ¦£¬ÓйØÊÔÌâ¶àΪ½â´ðÌ⣬Ҳ³öÏÖÔÚÑ¡ÔñÌâ¡¢Ìî¿ÕÌâÖУ¬½üÄêµÄÖп¼ÊÔÌâÖгöÏÖÁËÓйصÄÔĶÁÀí½âÌâ¡£
¿¼ÌâÀàÐÍ
22??6x-5xy+y=0 ?1?1.·½³Ì×é ?µÄ½âµÄ¸öÊý£¨ £© 2??y=x+6x+4 ?2? A.4 B.3 C.2 D.1
?ax+by=4?x=22£®·½³Ì×é? µÄ½âÊÇ? £¬Ôòa+b=
bx+ay=5y=1??3£®Èô·½³Ì×é ?y=mx+2 ?1?ûÓÐʵÊý½â£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨ £© 2y+4x+1=2y 2?????? A.m>1 B.m<-1 C.m<1ÇÒm¡Ù0 D.m>-1ÇÒm¡Ù0
22??x-3xy+2y=0 ?1?4.ÔĶÁ£º½â·½³Ì×é? 22 x+y=10 2????½â£ºÓÉ¢ÙµÄ(x-y)(x-2y)=0Ôòx-y=0»òx-2y=0 £¨µÚÒ»²½£©
32