£¨1£©3 ¡¤2 ¡Â30 £½ £¬£¨2£©
4xy
= £¬£¨3£©(3 £2)(3 £«2)= ¡£
2x
88
6£®Èç¹ûa £b µÄÏà·´ÊýÓëa £«b »¥Îªµ¹Êý£¬ÄÇô£¨ £©
£¨A£©a¡¢bÖбØÓÐÒ»¸öΪ0 £¨B£©¨Oa¨O£½¨Ob¨O£¨C£©a£½b£«1 £¨D£©b£½a£«1
7£®Èç¹û(2£x) £«(x£3) £½£¨x£2£©£«£¨3£x£©£¬ÄÇôxµÄȡֵ·¶Î§ÊÇ£¨ £© £¨A£©x¡Ý3 £¨B£©x¡Ü2 £¨C£©x>3 £¨D£©2¡Üx¡Ü3 8£®°Ñ£¨a£b£©
1£ »¯³É×î¼ò¶þ´Î¸ùʽ£¬ÕýÈ·µÄ½á¹ûÊÇ£¨ £© a£b
13
£«4x µÄ½á¹û±ØÎª£¨ £© x
2
2
£¨A£©b£a £¨B£©a£b £¨C£©£b£a £¨D£©£a£b 9£®»¯¼ò£3xx £
£¨A£©ÕýÊý £¨B£©¸ºÊý £¨C£©Áã £¨D£©²»ÄÜÈ·¶¨ 10£®¼ÆËã¼°»¯¼ò£º £¨1£©£¨58
¡¤27
121 ¡¤354 £© £¨2£©18 £« £432£1
10
£2(2 £«1)2
a£ab
£¨a>b£© 322 a£2ab+ab
23xx231xyxxa£¨3£©£¨ £ + £©¡Â £¨4£© 2y5xy322ya£b£ø£«31x-35
11.ÒÑÖª £½ ,Çó ¡Â( £µÄÖµx£2)¡£
£ø£«22x£4x£23+2+1£ø£«2xy +y1£ø- y+1
12.ÏÈ»¯¼ò,ÔÙÇóÖµ:( + )+ x £«y x - y x ÆäÖÐx=2 - 3 ,y=2 + 3
2
13.Éè11£62 µÄÕûÊý²¿·ÖΪm£¬Ð¡Êý²¿·ÖΪn£¬Çó´úÊýʽm£«n£« µÄÖµ¡£
n
14.ÊÔÇóº¯Êý£ô£½2££3£ø£«12£ø£9 µÄ×î´óÖµºÍ×îСֵ¡£
15.Èç¹û£á£«£â£«£ü£ã£1 £1£ü£½4£á£2 £«2£â£«1 £4£¬ÄÇô£á£«2£â£3£ãµÄÖµ
25
2
µÚ7¿Î Õûʽ·½³Ì
¡¼ÖªÊ¶µã¡½
µÈʽ¼°»ù±¾ÐÔÖÊ¡¢·½³Ì¡¢·½³ÌµÄ½â¡¢½â·½³Ì¡¢Ò»ÔªÒ»´Î·½³Ì¡¢Ò»Ôª¶þ´Î·½³Ì¡¢¼òµ¥µÄ¸ß´Î·½³Ì
¡¼´ó¸ÙÒªÇó¡½
1. Àí½â·½³ÌºÍÒ»ÔªÒ»´Î·½³Ì¡¢Ò»Ôª¶þ´Î·½³Ì¸ÅÄ
2. Àí½âµÈʽµÄ»ù±¾ÐÔÖÊ£¬ÄÜÀûÓõÈʽµÄ»ù±¾ÐÔÖʽøÐз½³ÌµÄ±äÐΣ¬ÕÆÎÕ½âÒ»ÔªÒ»´Î·½³ÌµÄÒ»°ã²½Ö裬ÄÜÊìÁ·µØ½âÒ»ÔªÒ»´Î·½³Ì£»
3. »áÍÆµ¼Ò»Ôª¶þ´Î·½³ÌµÄÇó¸ù¹«Ê½£¬Àí½â¹«Ê½·¨ÓëÓÃÖ±½Ó¿ªÆ½·½·¨¡¢Åä·½·¨½âÒ»Ôª¶þ´Î·½³ÌµÄ¹ØÏµ£¬»áÑ¡ÓÃÊʵ±µÄ·½·¨ÊìÁ·µØ½âÒ»Ôª¶þ´Î·½³Ì£»
4. Á˽â¸ß´Î·½³ÌµÄ¸ÅÄ»áÓÃÒòʽ·Ö½â·¨»ò»»Ôª·¨½â¿É»¯ÎªÒ»ÔªÒ»´Î·½³ÌºÍÒ»Ôª¶þ´Î·½³ÌµÄ¼òµ¥µÄ¸ß´Î·½³Ì£»
5. ÌåÑ顰δ֪¡±Óë¡°ÒÑÖª¡±µÄ¶ÔÁ¢Í³Ò»¹ØÏµ¡£ ÄÚÈÝ·ÖÎö
1£®·½³ÌµÄÓйظÅÄî
º¬ÓÐδ֪ÊýµÄµÈʽ½Ð×ö·½³Ì£®Ê¹·½³Ì×óÓÒÁ½±ßµÄÖµÏàµÈµÄδ֪ÊýµÄÖµ½Ð×ö·½³ÌµÄ½â(Ö»º¬ÓСª¸öδ֪ÊýµÄ·½³ÌµÄ½â£¬Ò²½Ð×ö¸ù)£® 2£®Ò»´Î·½³Ì(×é)µÄ½â·¨ºÍÓ¦ÓÃ
Ö»º¬ÓÐÒ»¸öδ֪Êý£¬²¢ÇÒδ֪ÊýµÄ´ÎÊýÊÇ1£¬ÏµÊý²»ÎªÁãµÄ·½³Ì£¬½Ð×öÒ»ÔªÒ»´Î·½³Ì£® ½âÒ»ÔªÒ»´Î·½³ÌµÄÒ»°ã²½ÖèÊÇÈ¥·Öĸ¡¢È¥À¨ºÅ¡¢ÒÆÏî¡¢ºÏ²¢Í¬ÀàÏîºÍϵÊý»¯³É1£® 3.Ò»Ôª¶þ´Î·½³ÌµÄ½â·¨ (!)Ö±½Ó¿ªÆ½·½·¨
2
ÐÎÈç(mx+n)=r(r¡Ýo)µÄ·½³Ì£¬Á½±ß¿ªÆ½·½£¬¼´¿Éת»¯ÎªÁ½¸öÒ»ÔªÒ»´Î·½³ÌÀ´½â£¬ÕâÖÖ·½·¨½Ð×öÖ±½Ó¿ªÆ½·½·¨£®
(2)°ÑÒ»Ôª¶þ´Î·½³Ìͨ¹ýÅä·½»¯³É
2
(mx+n)=r(r¡Ýo)
µÄÐÎʽ£¬ÔÙÓÃÖ±½Ó¿ªÆ½·½·¨½â£¬ÕâÖÖ·½·¨½Ð×öÅä·½·¨£® (3)¹«Ê½·¨
ͨ¹ýÅä·½·¨¿ÉÒÔÇóµÃÒ»Ôª¶þ´Î·½³Ì
2
ax+bx+c=0(a¡Ù0)
?b?b2?4acµÄÇó¸ù¹«Ê½£ºx?
2a ÓÃÇó¸ù¹«Ê½½âÒ»Ôª¶þ´Î·½³ÌµÄ·½·¨½Ð×ö¹«Ê½·¨£® (4)Òòʽ·Ö½â·¨
2
Èç¹ûÒ»Ôª¶þ´Î·½³Ìax+bx+c=0(a¡Ù0)µÄ×ó±ß¿ÉÒÔ·Ö½âΪÁ½¸öÒ»´ÎÒòʽµÄ»ý£¬ÄÇô¸ù¾ÝÁ½¸öÒòʽµÄ»ýµÈÓÚO£¬ÕâÁ½¸öÒòʽÖÁÉÙÓÐÒ»¸öΪO£¬Ô·½³Ì¿Éת»¯ÎªÁ½¸öÒ»ÔªÒ»´Î·½³ÌÀ´½â£¬ÕâÖÖ·½·¨½Ð×öÒòʽ·Ö½â·¨£® ¡¼¿¼²éÖØµãÓë³£¼ûÌâÐÍ¡½
¿¼²éÒ»ÔªÒ»´Î·½³Ì¡¢Ò»Ôª¶þ´Î·½³Ì¼°¸ß´Î·½³ÌµÄ½â·¨£¬ÓйØÏ°Ìâ³£³öÏÖÔÚÌî¿ÕÌâºÍÑ¡ÔñÌâÖС£ ¿¼²éÌâÐÍ
2
1£®·½³Ìx= x +1µÄ¸ùÊÇ£¨ £©
26
1¡À5 -1¡À5
(A)x = x+1 ( B) x = (C) x = ¡À x+1 (D) x = 222£®·½³Ì 2 x+ x = 0 µÄ½âΪ£¨ £©
111
(A) x1 = 0 x 2= (B) x1 = 0 x 2= - 2 (C) x = - (D) x1 = 0 x 2 = -
2223£® p x¨C 3x + p¨C p= 0 ÊǹØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬Ôò£¨ £©
£¨A£© p=1 £¨B£© p£¾0 £¨C£©p¡Ù0 £¨D£© pΪÈκÎʵÊý 4£®ÏÂÁз½³ÌÖУ¬½âΪx = 2µÄÊÇ£¨ £©
£¨A£©3x = x+3 £¨B£©- x + 3 = 0 £¨C£© 2 x = 6 (D) 5 x ¨C2 = 8
22
5£® ¹ØÓÚxµÄ·½³Ìx- 3 m x + m ¨C m = 0 µÄÒ»¸ö¸ùΪ-1£¬ÄÇômµÄÖµÊÇ£¨ £© 6£® ÒÑÖª2 x ¨C 3ºÍ1 + 4x »¥ÎªÏà·´Êý£¬Ôòx = ¡£ 7£®½âÏÂÁз½³Ì£º
111
£¨1£© X - [ x£ (x ¨C 9)] = (x¨C9)
339
£¨2£© x¨C 12 x = 3 (Åä·½·¨) £¨3£©y¨C 2 y= 5 y ¨C 10 2 2
£¨4£©3x¨C 5 x ¨C 2 = 0 (5) x ¨C 6x + 1=0 ¿¼µãѵÁ·£º
2
1. ¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì(2-m)x=m(3-x)-1µÄ¶þ´ÎÏîϵÊýÊÇ £¬Ò» ´ÎÏîϵÊýÊÇ £¬³£ÊýÏîÊÇ £¬¶ÔµÄÏÞÖÆÊÇ ¡£ 1-x
2. µ±x = ______ ʱ, x - µÄÖµµÈÓÚ1¡£
3
3. ·½³Ìa x + b x + c = 0, µ±a ¡Ù 0, b¨C 4 a c ¡Ý 0 ʱ£¬Æäʵ¸ùx = 4. XµÄ20 % ¼õÈ¥15µÄ²îµÄÒ»°ëµÈÓÚ2 ,Ó÷½³Ì±íʾ_______________
2
5. ½«·½³Ì(2 X +1) (3 X ¨C 2 ) = 3 (X¨C 2 ) »¯³ÉÒ»Ôª¶þ´Î·½³ÌµÄÒ»°ãÐÎʽµÃ_____________
1
6£®Èô·½³Ìa - (7 ¨C 5 x ) = 5 - x µÄ½âÊÇx = - £¬Ôòa =
2
2
2
2
2
3
2
2
2
2
2k-11
7£®´úÊýʽ Óë´úÊýʽ k +3 µÄÖµÏàµÈʱ£¬k µÄֵΪ£¨ £©
34£¨A£© 7 £¨B£© 8 £¨C£© 9 £¨D£© 10
12m-7
8£®Èô m + 1Óë »¥ÎªÏà·´Êý£¬ÔòmµÄֵΪ£¨ £©
333434 £¨A£© £¨B£© £¨C£©- £¨D£©-
43439£®·½³Ì a x+ b x = 0 ( a ¡Ù 0 ) µÄ¶þ¸ùÊÇ( )
bbab
(A) X1 = X2 = 0(B)X1 = 0 ,X2 = - (C) X1 = 0, X2 = (D) X1 = , X2 =
aaba10£®½âÏÂÁз½³Ì£º
2x-1x+0.12x+12(t-3)15t4t-28
(1) - = ¨C 1 (2) 14.5 - = -
30.645106(3) 2 x(5x ¨C 2 )= x(7¨C5 x)+14 (4) 2 t¨C4 = 7 t
23 2
(5) 3(2x ¨C 1) = 75 (6) x+ 8 x+ 15 x = 0
2 2 2
(7) (x¨C x )¨C 4 (2 x¨C 2 x ¨C 3 ) = 0 ½âÌâÖ¸µ¼
27
2
2
1£®k = ʱ£¬2ÊǹØÓÚxµÄ·½³Ì3©¦k©¦- 2 x = 6 x + 4µÄ½â
2 2
2£®·½³Ì4 x¨C 9 = 0µÄ¸ùÊÇ ,·½³Ì (x ¨C a )= b (b > 0 ) µÄ¸ùÊÇ 12
3£®Èôx+ 3 x + 1 = 0 Ôò x + =
x
4£®ÒÑÖªÈý½ÇÐεÄÁ½±ß³¤·Ö±ðÊÇ1ºÍ2£¬µÚÈý±ßµÄÊýÖµÊÇ·½³Ì2 x¨C 5 x +3 = 0µÄ¸ù£¬Ôò
.
Èý½ÇÐεÄÖܳ¤Îª
2 2 2
5£®kΪ ʱ, ·½³Ì (k¨C 3 k + 2 ) x+ (k+ 6 k ¨C 7 ) x + 2 k + 1 = 0, ÊǹØÓÚXµÄÒ»Ôª ¶þ´Î·½³Ì; kΪ ʱ, Õâ¸ö·½³ÌÊǹØÓÚXµÄÒ»ÔªÒ»´Î·½³Ì. 2-xx-1
6£®·½³Ì - = 5µÄ½âÊÇ£¨ £©
34
£¨A£© 5 £¨B£© - 5 £¨C£© 7 £¨D£©- 7
7£®Èô¹ØÓÚxµÄ·½³Ì2x ¨C 4= 3mºÍx+2=mÓÐÏàͬµÄ¸ù£¬ÔòmµÄÖµÊÇ£¨ £© (A) 10 (B) ¨C 8 (C) ¨C 10 (D) 8 8£®°ÑÏÂÁи÷ʽÅä·½
12222
(1) X - X+ =(X - ) (2) X - X+25=(x - )
2x22
9Èô2x ¨C 3xy ¨C 20y=0 y¡Ù0 Çó = .
y
10£® ½âÏÂÁз½³Ì:
2
(1) (x ¨C 1 ) ( x + 3 ) ¨C 2 ( x + 3 )+ 3 ( x + 3 ) ( x ¨C 3 ) = 0
32 2 2
(2) x¨C2x+1=0 (3)(3 x¨C2x +1)( 3x¨C2 x ¨C7) +12 = 0¶ÀÁ¢ÑµÁ·
1£®ÒÑ֪ʵÊýa.b.cÂú×ã a-3a+2 +©¦b+1©¦+(c + 3) = 0 Çó·½³Ìax+bx+c=0µÄ¸ù 2£®ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì (a x + 1 ) ( x ¨C a ) = a ¨C 2 µÄ¸÷ÏîϵÊýÖ®ºÍµÈÓÚ
3, ÇóÕâʱ·½³ÌµÄ½â 3£®½â·½³Ì
4x+14x-5222
(1) (2x ¨C 3) = (3x ¨C 2) (2) - = x+2
523 (3) (1+2 )x¨C(3 +2 )x+ =0 (4) 5m ¨C 17m + 14=0
2 2 2 22
(5) (x+x+1)(x+x + 12)=42 (6) 2x+ (3a-b)x ¨C2a+3ab- b=0
22
4£®½â¹ØÓÚxµÄ·½³Ìx+x ¨C 2+k(x+2x)=0 £¨¶ÔkÒªÌÖÂÛ£©
28
2
2
2
2
2
2