(A)xn+2¡Âxn+1=x2 (B)(xy)5¡Âxy3=(xy)2
(C)x10¡Â(x4¡Âx2)=x8 (D)(x4n¡Âx2n) ¡¤x3n=x
3n+2
10£®Èô£¨£á£í£«1£â£î£«2£©£¨£á2£î£1£â2£í£©£½£á5£â3
£¬Ôò£í£«£îµÄֵΪ£¨ £© £¨A£©1 £¨B£©2 £¨C£©3 £¨D£©£3 11¡¢¼ÆË㣺
(1) (£2ax)2
¡¤(£24331525 xyz) ¡Â(£2 axy)
(2) (13 an+2+2an+1) ¡Â(£1n£1
3
a)
(3) 5(m+n)(m£n)£2(m+n)2
£3(m£n)2
(4)(a£b+c£d)(£a£b£c£d)
(5)(£x£y)2(x2£xy+y2)2
(6)15+2a£{9a£[a£9£(3£6a)]}
£¨7£©£¨a2c£bc2
£©£(a£b+c)(a+b£c)
£ª(8)(a£b)(a+b)2£(a+b)(a-b)2+2b(a2+b2
)
13
µÚ4¿Î Òòʽ·Ö½â
¡¼ÖªÊ¶µã¡½
Òòʽ·Ö½â¶¨Ò壬ÌáÈ¡¹«Òòʽ¡¢Ó¦Óù«Ê½·¨¡¢·Ö×é·Ö½â·¨¡¢¶þ´ÎÈýÏîʽµÄÒòʽ£¨Ê®×ÖÏà³Ë·¨¡¢Çó¸ù£©¡¢Òòʽ·Ö½âÒ»°ã²½Öè¡£ ¡¼´ó¸ÙÒªÇó¡½
Àí½âÒòʽ·Ö½âµÄ¸ÅÄî£¬ÕÆÎÕÌáÈ¡¹«Òòʽ·¨¡¢¹«Ê½·¨¡¢·Ö×é·Ö½â·¨µÈÒòʽ·Ö½â·½·¨£¬ÕÆÎÕÀûÓöþ´Î·½³ÌÇó¸ù¹«Ê½·Ö½â¶þ´Î¶þÏîʽµÄ·½·¨£¬ÄܰѼòµ¥¶àÏîʽ·Ö½âÒòʽ¡£ ¡¼¿¼²éÖØµãÓë³£¼ûÌâÐÍ¡½
¿¼²éÒòʽ·Ö½âÄÜÁ¦£¬ÔÚÖп¼ÊÔÌâÖУ¬Òòʽ·Ö½â³öÏֵįµÂʺܸߡ£Öص㿼²éµÄ·ÖʽÌáÈ¡¹«Òòʽ¡¢Ó¦Óù«Ê½·¨¡¢·Ö×é·Ö½â·¨¼°ËüÃǵÄ×ÛºÏÔËÓá£Ï°ÌâÀàÐÍÒÔÌî¿ÕÌâΪ¶à£¬Ò²ÓÐÑ¡ÔñÌâºÍ½â´ðÌâ¡£
Òòʽ·Ö½â֪ʶµã ¶àÏîʽµÄÒòʽ·Ö½â£¬¾ÍÊǰÑÒ»¸ö¶àÏîʽ»¯Îª¼¸¸öÕûʽµÄ»ý£®·Ö½âÒòʽҪ½øÐе½Ã¿Ò»¸öÒòʽ¶¼²»ÄÜÔÙ·Ö½âΪֹ£®·Ö½âÒòʽµÄ³£Ó÷½·¨ÓУº (1)ÌṫÒòʽ·¨
Èç¶àÏîʽam?bm?cm?m(a?b?c),
ÆäÖÐm½Ð×öÕâ¸ö¶àÏîʽ¸÷ÏîµÄ¹«Òòʽ£¬ m¼È¿ÉÒÔÊÇÒ»¸öµ¥Ïîʽ£¬Ò²¿ÉÒÔÊÇÒ»¸ö¶àÏîʽ£® (2)ÔËÓù«Ê½·¨£¬¼´ÓÃ
a2?b2?(a?b)(a?b), a2?2ab?b2?(a?b)2,a3?b3?(a?b)(a2?ab?b2)д³ö½á¹û£®
(3)Ê®×ÖÏà³Ë·¨
¶ÔÓÚ¶þ´ÎÏîϵÊýΪlµÄ¶þ´ÎÈýÏîʽx?px?q, ѰÕÒÂú×ãab=q£¬a+b=pµÄa£¬b£¬ÈçÓУ¬Ôòx2?px?q?(x?a)(x?b);¶ÔÓÚÒ»°ãµÄ¶þ´ÎÈýÏîʽax?bx?c(a?0),ѰÕÒÂú×ã
a1a2=a£¬c1c2=c,a1c2+a2c1=bµÄa1£¬a2£¬c1£¬c2£¬ÈçÓУ¬Ôòax?bx?c?(a1x?c1)(a2x?c2). (4)·Ö×é·Ö½â·¨£º°Ñ¸÷ÏîÊʵ±·Ö×飬ÏÈʹ·Ö½âÒòʽÄÜ·Ö×é½øÐУ¬ÔÙʹ·Ö½âÒòʽÔÚ¸÷×éÖ®¼ä½øÐУ®
·Ö×éʱҪÓõ½ÌíÀ¨ºÅ£ºÀ¨ºÅÇ°ÃæÊÇ¡°+¡±ºÅ£¬À¨µ½À¨ºÅÀïµÄ¸÷Ïî¶¼²»±ä·ûºÅ£»À¨ºÅÇ°ÃæÊÇ¡°-¡±ºÅ£¬À¨µ½À¨ºÅÀïµÄ¸÷Ïî¶¼¸Ä±ä·ûºÅ.
(5)Çó¸ù¹«Ê½·¨£ºÈç¹ûax?bx?c?0(a?0),ÓÐÁ½¸ö¸ùX1£¬X2£¬ÄÇô ax2?bx?c?a(x?x1)(x?x2). ¿¼²éÌâÐÍ£º
1£®ÏÂÁÐÒòʽ·Ö½âÖУ¬ÕýÈ·µÄÊÇ£¨ £©
222212122
(A) 1- x= (x + 2) (x- 2) (B)4x ¨C2 x ¨C 2 = - 2(x- 1)
44(C) ( x- y ) ¨C(y- x) = (x ¨C y) (x ¨C y + 1) ( x ¨Cy ¨C 1)
14
3
(D) x ¨Cy ¨C x + y = ( x + y) (x ¨C y ¨C 1)
222
2£®ÏÂÁи÷µÈʽ(1) a£ b = (a + b) (a¨Cb ),(2) x¨C3x +2 = x(x¨C3) + 2 11112 2
(3 ) 2 ,(4 )x+ 2 £2££¨ x £ ) 2 £
x ¨Cy ( x + y) (x ¨C y ) x x´Ó×óµ½ÊÇÒòʽ·Ö½âµÄ¸öÊýΪ£¨ £©
(A) 1 ¸ö (B) 2 ¸ö (C) 3 ¸ö (D) 4¸ö
2
3£®Èôx£«mx£«25 ÊÇÒ»¸öÍêȫƽ·½Ê½£¬ÔòmµÄÖµÊÇ£¨ £© (A) 20 (B) 10 (C) ¡À 20 (D) ¡À10
2
4£®Èôx£«mx£«nÄÜ·Ö½â³É( x+2 ) (x ¨C 5)£¬Ôòm= ,n= ;
2
5£®Èô¶þ´ÎÈýÏîʽ2x+x+5mÔÚʵÊý·¶Î§ÄÚÄÜÒòʽ·Ö½â£¬Ôòm= ;
2
6£®Èôx+kx£6ÓÐÒ»¸öÒòʽÊÇ(x£2)£¬ÔòkµÄÖµÊÇ ; 7£®°ÑÏÂÁÐÒòʽÒòʽ·Ö½â£º
3222
(1)a£a£2a (2)4m£9n£4m+1
222
(3)3a+bc£3ac-ab (4)9£x+2xy£y
8£®ÔÚʵÊý·¶Î§ÄÚÒòʽ·Ö½â£º
222
(1)2x£3x£1 (2)£2x+5xy+2y
¿¼µãѵÁ·£º
1. ·Ö½âÏÂÁÐÒòʽ£º
2n+1nn-1
(1).10a(x£y)£5b(y£x) (2).a£4a£«4a
3
(3).x(2x£y)£2x£«y (4).x(6x£1)£1
122
(5).2ax£10ay£«5by£«6x (6).1£a£ab£ b
4
422
*(7).a£«4 (8).(x£«x)(x£«x£3)£«2
5522
(9).xy£9xy (10).£4x£«3xy£«2y
52
(11).4a£a (12).2x£4x£«1
22
(13).4y£«4y£5 (14)3X£7X+2
½âÌâÖ¸µ¼£º
1£®ÏÂÁÐÔËËã:(1) (a£3)£½a£6a£«9 (2) x£4£½(x £«2)( x £2)
121122222
(3) ax£«axy£«a£½a(x£«ax) (4) x£ x£« £½x£4x£«4£½(x£2)ÆäÖÐÊÇÒòʽ·Ö
1644½â£¬ÇÒÔËËãÕýÈ·µÄ¸öÊýÊÇ£¨ £©
£¨A£©1 £¨B£©2 £¨C£©3 £¨D£©4
2
2£®²»ÂÛ£áΪºÎÖµ£¬´úÊýʽ££á£«4£á£5Öµ£¨ £©
£¨A£©´óÓÚ»òµÈÓÚ0 £¨B£©0 £¨C£©´óÓÚ0 £¨D£©Ð¡ÓÚ0
15
2
2
22
3£®Èôx£«2£¨m£3£©x£«16 ÊÇÒ»¸öÍêȫƽ·½Ê½£¬ÔòmµÄÖµÊÇ£¨ £© £¨A£©£5 £¨B£©7 £¨C£©£1 £¨D£©7»ò£1
222222
4£®(x£«y)(x£1£«y)£12£½0,Ôòx£«yµÄÖµÊÇ £» 5£®·Ö½âÏÂÁÐÒòʽ£º
366
(1).8xy(x£y)£2(y£x) £ª(2).x£y
32
(3).x£«2xy£x£xy £ª(4).(x£«y)(x£«y£1)£12
222
(5).4£á£â££¨1££á£©£¨1££â£© (6).£3m£2m£«4
33
£ª4¡£ÒÑÖªa£«b£½1,Çóa£«3ab£«bµÄÖµ
222
5£®£á¡¢£â¡¢£ãΪ¨SABCÈý±ß£¬ÀûÓÃÒòʽ·Ö½â˵Ã÷£â££á£«2£á£ã££ãµÄ·ûºÅ
2
6£®0£¼£á¡Ü5£¬£áΪÕûÊý£¬Èô2£ø£«3£ø£«£áÄÜÓÃÊ®×ÖÏà³Ë·¨·Ö½âÒòʽ£¬Çó·ûºÏÌõ¼þµÄ£á
¶ÀÁ¢ÑµÁ·£º
222233
1£®¶àÏîʽx£y, x£2xy£«y, x£yµÄ¹«ÒòʽÊÇ ¡£ 2£®ÌîÉÏÊʵ±µÄÊý»òʽ£¬Ê¹×ó±ß¿É·Ö½âΪÓұߵĽá¹û£º
12222
(1)9x£( )£½(3x£« )( £ y), (2).5x£«6xy£8y£½(x )( £4y).
53£®¾ØÐεÄÃæ»ýΪ6x£«13x£«5 (x>0),ÆäÖÐÒ»±ß³¤Îª2x£«1,ÔòÁíΪ ¡£
2
4£®°Ña£a£6·Ö½âÒòʽ£¬ÕýÈ·µÄÊÇ( )
(A)a(a£1)£6 (B)(a£2)(a£«3) (C)(a£«2)(a£3) (D)(a£1)(a£«6)
12222222
5£®¶àÏîʽa£«4ab£«2b,a£4ab£«16b,a£«a£« ,9a£12ab£«4bÖУ¬ÄÜÓÃÍêȫƽ·½¹«Ê½·Ö
4½âÒòʽµÄÓÐ( )
(A) 1¸ö (B) 2¸ö (C) 3¸ö (D) 4¸ö 6£®Éè(x£«y)(x£«2£«y)£15£½0,Ôòx£«yµÄÖµÊÇ£¨ £© (A)-5»ò3 (B) -3»ò5 (C)3 (D)5
2
7£®¹ØÓڵĶþ´ÎÈýÏîʽx£4x£«cÄÜ·Ö½â³ÉÁ½¸öÕûϵÊýµÄÒ»´ÎµÄ»ýʽ£¬ÄÇôc¿ÉÈ¡ÏÂÃæËĸöÖµÖеģ¨ £©
(A) £8 (B) £7 (C) £6 (D) £5
2
8£®Èôx£mx£«n£½(x£4)(x£«3) Ôòm,nµÄֵΪ£¨ £©
(A) m£½£1, n£½£12 (B)m£½£1,n£½12 (C) m£½1,n£½£12 (D) m£½1,n£½12. 252
9£®´úÊýʽy£«my£« ÊÇÒ»¸öÍêȫƽ·½Ê½£¬ÔòmµÄÖµÊÇ ¡£
4
xy22
10£®ÒÑÖª2x£3xy£«y£½0£¨x,y¾ù²»ÎªÁ㣩£¬Ôò £« µÄֵΪ ¡£
yx11£®·Ö½âÒòʽ:
222
(1).x(y£z)£«81(z£y) (2).9m£6m£«2n£n
222242
£ª(3).ab(c£«d)£«cd(a£«b) (4).a£3a£4
16
2
2