(ÍêÕû°æ)2017Öп¼ÊýѧһÂÖ¸´Ï°½Ì°¸(ÍêÕû°æ) ÏÂÔØ±¾ÎÄ

(A)xn+2¡Âxn+1=x2 (B)(xy)5¡Âxy3=(xy)2

(C)x10¡Â(x4¡Âx2)=x8 (D)(x4n¡Âx2n) ¡¤x3n=x

3n+2

10£®Èô£¨£á£í£«1£â£î£«2£©£¨£á2£î£­1£â2£í£©£½£á5£â3

£¬Ôò£í£«£îµÄֵΪ£¨ £© £¨A£©1 £¨B£©2 £¨C£©3 £¨D£©£­3 11¡¢¼ÆË㣺

(1) (£­2ax)2

¡¤(£­24331525 xyz) ¡Â(£­2 axy)

(2) (13 an+2+2an+1) ¡Â(£­1n£­1

3

a)

(3) 5(m+n)(m£­n)£­2(m+n)2

£­3(m£­n)2

(4)(a£­b+c£­d)(£­a£­b£­c£­d)

(5)(£­x£­y)2(x2£­xy+y2)2

(6)15+2a£­{9a£­[a£­9£­(3£­6a)]}

£¨7£©£¨a2c£­bc2

£©£­(a£­b+c)(a+b£­c)

£ª(8)(a£­b)(a+b)2£­(a+b)(a-b)2+2b(a2+b2

)

13

µÚ4¿Î Òòʽ·Ö½â

¡¼ÖªÊ¶µã¡½

Òòʽ·Ö½â¶¨Ò壬ÌáÈ¡¹«Òòʽ¡¢Ó¦Óù«Ê½·¨¡¢·Ö×é·Ö½â·¨¡¢¶þ´ÎÈýÏîʽµÄÒòʽ£¨Ê®×ÖÏà³Ë·¨¡¢Çó¸ù£©¡¢Òòʽ·Ö½âÒ»°ã²½Öè¡£ ¡¼´ó¸ÙÒªÇó¡½

Àí½âÒòʽ·Ö½âµÄ¸ÅÄî£¬ÕÆÎÕÌáÈ¡¹«Òòʽ·¨¡¢¹«Ê½·¨¡¢·Ö×é·Ö½â·¨µÈÒòʽ·Ö½â·½·¨£¬ÕÆÎÕÀûÓöþ´Î·½³ÌÇó¸ù¹«Ê½·Ö½â¶þ´Î¶þÏîʽµÄ·½·¨£¬ÄܰѼòµ¥¶àÏîʽ·Ö½âÒòʽ¡£ ¡¼¿¼²éÖØµãÓë³£¼ûÌâÐÍ¡½

¿¼²éÒòʽ·Ö½âÄÜÁ¦£¬ÔÚÖп¼ÊÔÌâÖУ¬Òòʽ·Ö½â³öÏֵįµÂʺܸߡ£Öص㿼²éµÄ·ÖʽÌáÈ¡¹«Òòʽ¡¢Ó¦Óù«Ê½·¨¡¢·Ö×é·Ö½â·¨¼°ËüÃǵÄ×ÛºÏÔËÓá£Ï°ÌâÀàÐÍÒÔÌî¿ÕÌâΪ¶à£¬Ò²ÓÐÑ¡ÔñÌâºÍ½â´ðÌâ¡£

Òòʽ·Ö½â֪ʶµã ¶àÏîʽµÄÒòʽ·Ö½â£¬¾ÍÊǰÑÒ»¸ö¶àÏîʽ»¯Îª¼¸¸öÕûʽµÄ»ý£®·Ö½âÒòʽҪ½øÐе½Ã¿Ò»¸öÒòʽ¶¼²»ÄÜÔÙ·Ö½âΪֹ£®·Ö½âÒòʽµÄ³£Ó÷½·¨ÓУº (1)ÌṫÒòʽ·¨

Èç¶àÏîʽam?bm?cm?m(a?b?c),

ÆäÖÐm½Ð×öÕâ¸ö¶àÏîʽ¸÷ÏîµÄ¹«Òòʽ£¬ m¼È¿ÉÒÔÊÇÒ»¸öµ¥Ïîʽ£¬Ò²¿ÉÒÔÊÇÒ»¸ö¶àÏîʽ£® (2)ÔËÓù«Ê½·¨£¬¼´ÓÃ

a2?b2?(a?b)(a?b), a2?2ab?b2?(a?b)2,a3?b3?(a?b)(a2?ab?b2)д³ö½á¹û£®

(3)Ê®×ÖÏà³Ë·¨

¶ÔÓÚ¶þ´ÎÏîϵÊýΪlµÄ¶þ´ÎÈýÏîʽx?px?q, ѰÕÒÂú×ãab=q£¬a+b=pµÄa£¬b£¬ÈçÓУ¬Ôòx2?px?q?(x?a)(x?b);¶ÔÓÚÒ»°ãµÄ¶þ´ÎÈýÏîʽax?bx?c(a?0),ѰÕÒÂú×ã

a1a2=a£¬c1c2=c,a1c2+a2c1=bµÄa1£¬a2£¬c1£¬c2£¬ÈçÓУ¬Ôòax?bx?c?(a1x?c1)(a2x?c2). (4)·Ö×é·Ö½â·¨£º°Ñ¸÷ÏîÊʵ±·Ö×飬ÏÈʹ·Ö½âÒòʽÄÜ·Ö×é½øÐУ¬ÔÙʹ·Ö½âÒòʽÔÚ¸÷×éÖ®¼ä½øÐУ®

·Ö×éʱҪÓõ½ÌíÀ¨ºÅ£ºÀ¨ºÅÇ°ÃæÊÇ¡°+¡±ºÅ£¬À¨µ½À¨ºÅÀïµÄ¸÷Ïî¶¼²»±ä·ûºÅ£»À¨ºÅÇ°ÃæÊÇ¡°-¡±ºÅ£¬À¨µ½À¨ºÅÀïµÄ¸÷Ïî¶¼¸Ä±ä·ûºÅ.

(5)Çó¸ù¹«Ê½·¨£ºÈç¹ûax?bx?c?0(a?0),ÓÐÁ½¸ö¸ùX1£¬X2£¬ÄÇô ax2?bx?c?a(x?x1)(x?x2). ¿¼²éÌâÐÍ£º

1£®ÏÂÁÐÒòʽ·Ö½âÖУ¬ÕýÈ·µÄÊÇ£¨ £©

222212122

(A) 1- x= (x + 2) (x- 2) (B)4x ¨C2 x ¨C 2 = - 2(x- 1)

44(C) ( x- y ) ¨C(y- x) = (x ¨C y) (x ¨C y + 1) ( x ¨Cy ¨C 1)

14

3

(D) x ¨Cy ¨C x + y = ( x + y) (x ¨C y ¨C 1)

222

2£®ÏÂÁи÷µÈʽ(1) a£­ b = (a + b) (a¨Cb ),(2) x¨C3x +2 = x(x¨C3) + 2 11112 2

(3 ) 2 ,(4 )x+ 2 £­2£­£¨ x £­ ) 2 £­

x ¨Cy ( x + y) (x ¨C y ) x x´Ó×óµ½ÊÇÒòʽ·Ö½âµÄ¸öÊýΪ£¨ £©

(A) 1 ¸ö (B) 2 ¸ö (C) 3 ¸ö (D) 4¸ö

2

3£®Èôx£«mx£«25 ÊÇÒ»¸öÍêȫƽ·½Ê½£¬ÔòmµÄÖµÊÇ£¨ £© (A) 20 (B) 10 (C) ¡À 20 (D) ¡À10

2

4£®Èôx£«mx£«nÄÜ·Ö½â³É( x+2 ) (x ¨C 5)£¬Ôòm= ,n= ;

2

5£®Èô¶þ´ÎÈýÏîʽ2x+x+5mÔÚʵÊý·¶Î§ÄÚÄÜÒòʽ·Ö½â£¬Ôòm= ;

2

6£®Èôx+kx£­6ÓÐÒ»¸öÒòʽÊÇ(x£­2)£¬ÔòkµÄÖµÊÇ ; 7£®°ÑÏÂÁÐÒòʽÒòʽ·Ö½â£º

3222

(1)a£­a£­2a (2)4m£­9n£­4m+1

222

(3)3a+bc£­3ac-ab (4)9£­x+2xy£­y

8£®ÔÚʵÊý·¶Î§ÄÚÒòʽ·Ö½â£º

222

(1)2x£­3x£­1 (2)£­2x+5xy+2y

¿¼µãѵÁ·£º

1. ·Ö½âÏÂÁÐÒòʽ£º

2n+1nn-1

(1).10a(x£­y)£­5b(y£­x) (2).a£­4a£«4a

3

(3).x(2x£­y)£­2x£«y (4).x(6x£­1)£­1

122

(5).2ax£­10ay£«5by£«6x (6).1£­a£­ab£­ b

4

422

*(7).a£«4 (8).(x£«x)(x£«x£­3)£«2

5522

(9).xy£­9xy (10).£­4x£«3xy£«2y

52

(11).4a£­a (12).2x£­4x£«1

22

(13).4y£«4y£­5 (14)3X£­7X+2

½âÌâÖ¸µ¼£º

1£®ÏÂÁÐÔËËã:(1) (a£­3)£½a£­6a£«9 (2) x£­4£½(x £«2)( x £­2)

121122222

(3) ax£«axy£«a£½a(x£«ax) (4) x£­ x£« £½x£­4x£«4£½(x£­2)ÆäÖÐÊÇÒòʽ·Ö

1644½â£¬ÇÒÔËËãÕýÈ·µÄ¸öÊýÊÇ£¨ £©

£¨A£©1 £¨B£©2 £¨C£©3 £¨D£©4

2

2£®²»ÂÛ£áΪºÎÖµ£¬´úÊýʽ£­£á£«4£á£­5Öµ£¨ £©

£¨A£©´óÓÚ»òµÈÓÚ0 £¨B£©0 £¨C£©´óÓÚ0 £¨D£©Ð¡ÓÚ0

15

2

2

22

3£®Èôx£«2£¨m£­3£©x£«16 ÊÇÒ»¸öÍêȫƽ·½Ê½£¬ÔòmµÄÖµÊÇ£¨ £© £¨A£©£­5 £¨B£©7 £¨C£©£­1 £¨D£©7»ò£­1

222222

4£®(x£«y)(x£­1£«y)£­12£½0,Ôòx£«yµÄÖµÊÇ £» 5£®·Ö½âÏÂÁÐÒòʽ£º

366

(1).8xy(x£­y)£­2(y£­x) £ª(2).x£­y

32

(3).x£«2xy£­x£­xy £ª(4).(x£«y)(x£«y£­1)£­12

222

(5).4£á£â£­£¨1£­£á£©£¨1£­£â£© (6).£­3m£­2m£«4

33

£ª4¡£ÒÑÖªa£«b£½1,Çóa£«3ab£«bµÄÖµ

222

5£®£á¡¢£â¡¢£ãΪ¨SABCÈý±ß£¬ÀûÓÃÒòʽ·Ö½â˵Ã÷£â£­£á£«2£á£ã£­£ãµÄ·ûºÅ

2

6£®0£¼£á¡Ü5£¬£áΪÕûÊý£¬Èô2£ø£«3£ø£«£áÄÜÓÃÊ®×ÖÏà³Ë·¨·Ö½âÒòʽ£¬Çó·ûºÏÌõ¼þµÄ£á

¶ÀÁ¢ÑµÁ·£º

222233

1£®¶àÏîʽx£­y, x£­2xy£«y, x£­yµÄ¹«ÒòʽÊÇ ¡£ 2£®ÌîÉÏÊʵ±µÄÊý»òʽ£¬Ê¹×ó±ß¿É·Ö½âΪÓұߵĽá¹û£º

12222

(1)9x£­( )£½(3x£« )( £­ y), (2).5x£«6xy£­8y£½(x )( £­4y).

53£®¾ØÐεÄÃæ»ýΪ6x£«13x£«5 (x>0),ÆäÖÐÒ»±ß³¤Îª2x£«1,ÔòÁíΪ ¡£

2

4£®°Ña£­a£­6·Ö½âÒòʽ£¬ÕýÈ·µÄÊÇ( )

(A)a(a£­1)£­6 (B)(a£­2)(a£«3) (C)(a£«2)(a£­3) (D)(a£­1)(a£«6)

12222222

5£®¶àÏîʽa£«4ab£«2b,a£­4ab£«16b,a£«a£« ,9a£­12ab£«4bÖУ¬ÄÜÓÃÍêȫƽ·½¹«Ê½·Ö

4½âÒòʽµÄÓÐ( )

(A) 1¸ö (B) 2¸ö (C) 3¸ö (D) 4¸ö 6£®Éè(x£«y)(x£«2£«y)£­15£½0,Ôòx£«yµÄÖµÊÇ£¨ £© (A)-5»ò3 (B) -3»ò5 (C)3 (D)5

2

7£®¹ØÓڵĶþ´ÎÈýÏîʽx£­4x£«cÄÜ·Ö½â³ÉÁ½¸öÕûϵÊýµÄÒ»´ÎµÄ»ýʽ£¬ÄÇôc¿ÉÈ¡ÏÂÃæËĸöÖµÖеģ¨ £©

(A) £­8 (B) £­7 (C) £­6 (D) £­5

2

8£®Èôx£­mx£«n£½(x£­4)(x£«3) Ôòm,nµÄֵΪ£¨ £©

(A) m£½£­1, n£½£­12 (B)m£½£­1,n£½12 (C) m£½1,n£½£­12 (D) m£½1,n£½12. 252

9£®´úÊýʽy£«my£« ÊÇÒ»¸öÍêȫƽ·½Ê½£¬ÔòmµÄÖµÊÇ ¡£

4

xy22

10£®ÒÑÖª2x£­3xy£«y£½0£¨x,y¾ù²»ÎªÁ㣩£¬Ôò £« µÄֵΪ ¡£

yx11£®·Ö½âÒòʽ:

222

(1).x(y£­z)£«81(z£­y) (2).9m£­6m£«2n£­n

222242

£ª(3).ab(c£«d)£«cd(a£«b) (4).a£­3a£­4

16

2

2