物理化学核心教程沈文霞 课后习题答案 下载本文

(C)?S?nRlnp2 p1 (D)无法计算

答:(B)。虽然真空绝热膨胀是一个不可逆过程,但是理想气体的温度不变,可以设计一个始、终态相同的等温可逆膨胀过程,用(B)式来计算熵变。

6.在对N2(g)和O2(g)的混合气体进行绝热可逆压缩,系统的热力学函数变化值在下列结论中正确的是: ( )

(A) ΔU = 0 (B) ΔA = 0 (C) ΔS = 0 (D) ΔG = 0 答:(C)。绝热可逆过程是恒熵过程,由于QR= 0,所以ΔS = 0。

7. 1 mol 单原子分子理想气体,温度由T1变到T2时,等压可逆过程,系统的熵变为?Sp,等容可逆过程,系统的熵变为?SV,两着之比?Sp∶?SV等于:( )

(A) 1∶1

(C) 3∶5

(B) 2∶1 (D) 5∶3

T2T,等容、变温可逆过程,?SV?nCV,mln2。T1T1答:(D)。等压、变温可逆过程,?Sp?nCp,mln现在温度区间相同,单原子分子理想气体的CV,m?于摩尔等压热容与摩尔等容热容之比。

35∶3,相当R,Cp,m?R,所以,?Sp∶?SV?5228.1 g纯的H2O(l)在 373 K,101.3 kPa的条件下,可逆汽化为同温同压的H2O(g),热力学函数的变量为 ΔU1,ΔH1和 ΔG1;现把1 g纯的H2O(l)(温度、压力同上),放在373 K 的恒温真空箱中,控制体积,使系统终态的蒸气压也为101.3 kPa,这时热力学函数变量为ΔU2,ΔH2和 ΔG2。

这两组热力学函数的关系为: ( )

(A) ΔU1> ΔU2, ΔH1> ΔH2, ΔG1> ΔG2 (B) ΔU1< ΔU2, ΔH1< ΔH2, ΔG1< ΔG2 (C) ΔU1= ΔU2, ΔH1= ΔH2, ΔG1= ΔG2

(D) ΔU1= ΔU2, ΔH1> ΔH2, ΔG1= ΔG2

答:(C)。系统的始态与终态都相同,所有热力学状态函数的变量也都相同,与变化途径无关。 9. 298 K时,1 mol 理想气体等温可逆膨胀,压力从1 000 kPa变到100 kPa,系统的Gibbs自由能的变化值为 ( )

(A) 0.04 kJ (B) ?12.4 kJ (C) 5.70 kJ (D) ?5.70 kJ

答:(D)。理想气体等温可逆膨胀,

10.对于不做非膨胀功的隔离系统,熵判据为: ( ) (A)(dS)T,U?0 (B)(dS)p,U?0 (C)(dS)T,p?0 (D)(dS)U,V?0

答:(D)。在不做非膨胀功时,保持系统的U,V不变,即膨胀功等于零,?U?0,这就是一个隔离系统。

11.甲苯在101.3 kPa时的正常沸点为110℃,现在将1 mol甲苯放入与110℃的热源接触的真空容器中,控制容器的容积,使甲苯迅速气化为同温、同压的蒸气。如下描述该过程的热力学变量

正确的是 ( )

(A)?vapU?0 (C)?vapS?0

(B)?vapH?0

(D)?vapG?0

答:(D)。甲苯的始、终态与等温、等压可逆蒸发的始终态完全相同,所以状态函数的变化量也相同。对于等温、等压可逆相变,?vapG?0。

12. 某实际气体的状态方程为pVm?RT??p,其中?为大于零的常数,该气体经等温可逆膨胀后,其热力学能将 ( ) (A) 不变 (B) 增大 (C) 减少 (D) 不能确定

答:(A)。可以将该实际气体的状态方程改写为p(Vm??)?RT,与理想气体的状态方程相比,只对体积项进行了校正,说明该实际气体分子本身所占的体积不能忽略,但对压力项没有进行校正,说明该气体分子之间的相互作用可以忽略,这一点与理想气体相同,所以在膨胀时,不需克服分子间的引力,所以在等温膨胀时,热力学能保持不变。这种气体作绝热真空膨胀时,温度也不会改变。

13.在封闭系统中,若某过程的?A?Wmax,应满足的条件是( )

(A)等温、可逆过程 (B)等容、可逆过程

(C)等温、等压、可逆过程 (D)等温、等容、可逆过程

答:(A)。在等温、可逆过程中,Helmholtz自由能的变化值就等于对环境做的最大功,包括膨胀功和非膨胀功,这就是将Helmholtz自由能称为功函的原因。在定义Helmholtz自由能时,只引入了等温的条件。

14. 热力学第三定律也可以表示为 ( )

(A) 在0 K时,任何晶体的熵等于零 (B) 在0 K时,任何完整晶体的熵等于零

(C) 在0 ℃时,任何晶体的熵等于零

(D)在0 ℃时,任何完整晶体的熵等于零

答:(B)。完整晶体通常只有一种排列方式,根据描述熵的本质的Boltzmann公式,S?kBlnΩ,可得到,在0 K时,完整晶体的Ω?1,则熵等于零。

15.纯H2O(l)在标准压力和正常沸点时,等温、等压可逆汽化,则( )

(A) ΔvapU?=ΔvapH?,ΔvapA?=ΔvapG?,ΔvapS?> 0 (B) ΔvapU?<ΔvapH?,ΔvapA?<ΔvapG?,ΔvapS?> 0

(C) ΔvapU?>ΔvapH?,ΔvapA?>ΔvapG?,ΔvapS?< 0

(D) ΔvapU?<ΔvapH?,ΔvapA?<ΔvapG?,ΔvapS?< 0

答:(B)。任何液体在汽化时,其ΔvapS?> 0。在正常沸点等温、等压可逆汽化时,ΔvapG?=0,液体等压变为气体时,要对环境做功,所以ΔvapA?<0,ΔvapU?<ΔvapH?。

16.在 -10℃、101.325kPa下,1mol水凝结成冰的过程中,下列哪个公式仍适用

( )

(A) ?U = T?S

(B) ?S??H??G T(C) ?H = T?S + V?p (D) ?GT,p = 0

答:(B)。过冷水结冰是一个不可逆过程,但是温度保持不变,根据Gibbs自由能的定义式,在等温时,?G??H?T?S,这个公式总是可以使用的。只是?H和?S的数值要通过设计可逆过

程进行计算。 五.习题解析

1.热机的低温热源一般是空气或水,平均温度设为293 K。为了提高热机的效率,只有尽可能提高高温热源的温度。如果希望可逆热机的效率能达到60%,试计算这时高温热源的温度。高温热源一般是加压水蒸气,这时水蒸气将处于什么状态?已知水的临界温度为647 K。

解:根据理想的Carnot热机,可逆热机效率与两个热源温度的关系式为 解得高温热源的温度 Th?733 K

这时加压水蒸气的温度已远远超过水的临界温度,水蒸气处于远超临界状态,压力很高,需要耐压性能很好的锅炉。事实上,实用的热机都是不可逆的,就是有这样的高温热源,实用热机的效率也远低于60%。

2.①5 mol双原子分子理想气体,在等容的条件下,由448 K冷却到298 K;② 3 mol单原子分子理想气体,在等压条件下由300 K加热到600 K,试计算这两个过程的?S。

5解:① 该过程系等容、变温过程,双原子分子理想气体的CV,m?R,所以

25 ② 该过程系等压、变温过程,单原子分子理想气体的Cp,m?R

2垐?3.某蛋白质在323 K时变性,并达到平衡状态,即:天然蛋白质噲?变性蛋白质,已知该变

性过程的摩尔焓变?rHm?29.288 kJ?mol?1,,求该反应的摩尔熵变?rSm。。

解: 因为已达到平衡状态,可以认为变性过程的焓变就是可逆热效应,

4.1 mol理想气体在等温下,分别经历如下两个过程:① 可逆膨胀过程;② 向真空膨胀过程,终态体积都是始态体积的10倍。分别计算这两个过程系统的熵变。

解:① 因该过程系理想气体等温可逆膨胀过程,所以:

② 虽然与(1)的膨胀方式不同,但其始、终态相同,熵是状态函数,所以该过程的熵变与①的相同,即?S2?19.14 J?K?1。

5.有2 mol单原子分子理想气体,由始态500 kPa,323 K 加热到终态1 000 kPa,373 K。试计算此气体的熵变。

解:这是一个p,V,T都改变的过程,计算熵变要分两步进行。第一步,等温可逆改变压力的过程,第二步,等压可逆改变温度的过程,熵变的计算式为

6.在300 K时,有物质的量为n的单原子分子理想气体,从始态100 kPa,122 dm3,反抗50 kPa的外压,等温膨胀到50 kPa。试计算:

(1)?U,?H,终态体积V2,以及如果过程是可逆过程的热QR和功WR。 (2)如果过程是不可逆过程的热QI和功WI。 (3)?Ssys,?Ssur和?Siso。

解:(1) 这是理想气体的等温膨胀,所以 ?H?0,?U?0。 假设理想气体进行等温可逆膨胀至终态,则

(2)理想气体进行等温、等外压膨胀至终态

(3)计算系统的熵变,用假设的可逆过程的热温商计算

计算环境的熵变,用系统实际不可逆过程的热的负值来计算,因为环境是个大热源,对于系统是不可逆的热效应,但是对于环境还是可以认为是可逆的。

7.有一个绝热的刚性容器,中间用隔板将容器分为两个部分,分别充以不同温度的N2 (g)和O2 (g),如图所示。N2 (g)和O2 (g)皆可视为理想气体。

(1) 设中间隔板是导热的,并能滑动以保持两边的压力相等。计算整个系统达到热平衡时的ΔS。

(2) 达到热平衡后,将隔板抽去,求系统的混合熵变ΔmixS。

解:(1) 首先要求出达到热平衡时的温度T 。因为两种气体的总体积未变,又是绝热容器,所以W?0,Q?0,则?U?0。已知N2(g)的温度为T1?293 K,O2 (g)的温度为T2?283 K,达到热平衡时,有

因为两种气体都是双原子分子理想气体,等容摩尔热容相同,物质的量也相等,所以有: 解得 T?288 K

其实,对于物质的量相等、等容摩尔热容也相同的两种不同温度的气体,达热平衡时的温度就等于两者温度的平均值,T?(T1?T2)/2?288 K。

设想这个热传导是在等压可逆的情况下进行的,所以

(2) 达热平衡后抽去隔板,两种气体的体积都扩大一倍,

8.人体活动和生理过程是在恒压下做广义电功的过程。问在298 K时,1mol 葡萄糖最多能提供多少能量来供给人体活动和维持生命之用。

$已知在298 K时:葡萄糖的标准摩尔燃烧焓?cHm(C6H12O6)??2 808 kJ?mol?1,$$Sm(C6H12O6)?212.0 J?K?1?mol?1, Sm(CO2)?213.74 J?K?1?mol?1,

$$Sm(H2O,l)?69.91 J?K?1?mol?1, Sm(O2,g)?205.14 J?K?1?mol?1

解:要计算最大的广义电功,实际是计算1 mol葡萄糖在燃烧时的摩尔反应Gibbs自由能的变化值。葡萄糖的燃烧反应为

9.某化学反应,若在298 K和标准压力下进行,放热 40?00 kJ,若使该反应通过可逆电池来完成,在与化学反应的始、终态相同时,则吸热 4?00 kJ。试计算:

$ (1) 该化学反应的?rSm。

(2) 当该反应自发进行,不做电功时的环境熵变,及隔离系统的熵变。 (3) 计算系统可能做的最大电功。

解: (1) 化学反应能自发进行,说明是一个不可逆过程,不能用它的热效应来计算熵变,要利用始终态相同的可逆电池的热效应来计算熵变,所以

(2) 系统在化学反应中的不可逆放热,环境可以按可逆的方式来接收,所以 (3) 在可逆电池中,系统可能做的最大电功在数值上就等于?rGm,所以

10.在 298 K的等温情况下,两个容器中间有旋塞连通,开始时一边放0.2 molO2(g),压力为 20 kPa,另一边放0.8 mol N2(g),压力为 80 kPa,打开旋塞后,两气体相互混合,设气体均为理想气体。试计算:

(1) 终态时容器中的压力。

(2) 混合过程的Q,W,?mixU,?mixS和?mixG。

(3) 如果在等温下,可逆地使气体分离,都恢复原状,计算过程的Q和W 。

解: (1) 首先计算旋塞两边容器的体积,然后得到两个容器的总体积,就能计算最终混合后的压力

(2) 理想气体的等温混合过程,