8
蓄电池交流负载太阳能电池阵列控制器逆变器电网DC/DC变换器直流负载
图1.1太阳能光伏发电系统
2.1离网光伏发电系统
离网光伏发电系统是指未与公共电网相连接的太阳能光伏发电系统,其输出功率提供给本地负载(交流负载或直流负载)的发电系统。其主要应用于远离公共电网的无电地区和一些特殊场所,如为公共电网难以覆盖的边远偏僻农村、海岛和牧区提供照明、看电视、听广播等基本生活用电,也可为通信中继站、气象站和边防哨所等特殊处所提供电源。
8
9
图2.1所示为一种常用的太阳能独立光伏发电系统结构示意图,该系统由太阳能电池阵列、DC/DC变换器、蓄电池组、DC/AC逆变器和交直流负载构成。DC/DC变换器将太阳能电池阵列转化的电能传送给蓄电池组存储起来供日照不足时使用。蓄电池组的能量直接给直流负载供电或经DC/AC变换器给交流负载供电。该系统由于有蓄电池组,因而系统成本增加,但可在无日照或日照不足时为负载供电。[8]
太阳能电池板DC/DC蓄电池图变换器2.1离网光伏发电系统 直流负载2.1.1铅酸蓄电池 储能是光伏发电系统的重要组成部分,尤其对于独立光伏发电系统而言,储能环节更是不可缺少的组成部分。储能系统的好坏直接影响到光伏发电系统的性能在实际的光伏发电系统中,储能部分又是最控制器逆变器交流负载易受损、最易消耗的部分。所以获得最佳的储能系统成为光伏系统设计的重要组成部分。目前光伏发电系统中通常使用蓄电池实现储能,常用蓄电池属于电化学电池。蓄电池在充电时把电能转化为化学能储存起来,放电时把储存的化学能转化为电能提供给负载使用。一般来讲,光伏发电系统白天把太阳能转化为电能,通过充电器和蓄电池把电能储存起来,晚上再通过放电器把储存在蓄电池里的电能放出来使用。
其中常用的蓄电池有铅酸蓄电池、镍镉蓄电池和镍氢蓄电池。目前中国用于太阳能光伏发电系统的蓄电池除有少量用于高寒户外系统采用镍镉蓄电池外,绝大多数是采用铅酸蓄电池。在小型的太阳能
9
10
草坪灯和便携式太阳能供电系统中使用镍镉或镍氢蓄电池比较多。 铅酸蓄电池充电控制方法:
在太阳能独立光伏发电系统中,对铅酸蓄电池使用的充电控制方法直接影响到系统的性能。充电控制方法的优劣影响到铅酸蓄电池的荷电量的大小,同时也关系到铅酸蓄电池的使用寿命。而电荷量的大小决定着太阳能独立光伏发电系统向负载供电的能力、铅酸蓄电池的使用寿命关系到系统的成本、造价以及系统的使用寿命,因此选择合理的充电控制方法是提高太阳能独立光伏发电系统性能的有效手段。目前铅酸蓄电池常用的充电控制包括恒流充电、恒压充电、两阶段和三阶段充电等方法。[9]
(一)恒流充电
恒流充电就是以一定的电流进行充电,在充电过程中随着铅酸蓄电池电压的变化要进行电流调整使之恒定不变。这种方法特别适合于多个铅酸蓄电池串联的铅酸蓄电池组进行充电,能使落后的铅酸蓄电池的容量易于得到恢复,最好用于小电流长时间的充电模式。这种充电方式的不足之处在于:铅酸蓄电池开始充电电流偏小,在充电后期充电电流又偏大,充电电压偏高,整个充电过程时间长。
(二)恒压充电法
恒压充电就是以一恒定电压对铅酸蓄电池进行充电。在充电初期由于铅酸蓄电池电压较低,充电电流较大,但随着铅酸蓄电池电压的逐渐升高,电流逐渐减少。在充电末期只有很小的电流通过,这样充电过程中就不必调整电流。相对恒流电来说,此法的充电电流自动减
10
11
少,所以充电过程中析气量小,充电时间短,能耗低。这种充电方法不足之处在于:在充电初期,如果铅酸蓄电池放电深度过深,充电电流会很大,不仅危及充电器的安全,而且铅酸蓄电池可能因过流而受到损伤;如果铅酸蓄电池电压过低,后期充电电流又过小,充电时间过长,不适合串联数量多的铅酸蓄电池组充电。铅酸蓄电池电压的变化很难补偿,充电过程中对落后电池的完全充电也很难完成。这种充电方法在小型的太阳能光伏发电系统中经常用到,因为这种系统中来自太阳能电池阵列的电流不会太大,而且这种系统中铅酸蓄电池组串联不多。
(三)两阶段充电法
这种方法是为了克服恒流与恒压充电的缺点而结合的一种充电策略。它首先对铅酸蓄电池采用恒流充电方式充电,铅酸蓄电池充电到达一定容量后,然后采用恒压充电方式充电。采用这种充电方式,在充电初期,铅酸蓄电池不会出现很大的电流,在充电后期也不会出现铅酸蓄电池电压过高,使铅酸蓄电池产生析气。
(四)三阶段充电法
三阶段充电法是在两阶段充电完毕后,铅酸蓄电池容量己经达到额定容量时,再继续以很小的电流向铅酸蓄电池充电以弥补铅酸蓄电池由于自放电损失的电量,这种以小电流充电的方式也称为浮充。在浮充时,铅酸蓄电池充电电压要比恒压阶段的充电电压低。
在太阳能光伏发电系统中,综合考虑日照强度以及环境温度对光伏系统充电电流的影响、铅酸蓄电池性能以及系统成本等因素,使用
11