·ÖÎö¡¢Æô·¢¡¢ÓÕµ¼¡¢½²Á·½áºÏ£® ËÄ¡¢½Ìѧ¹ý³Ì
(Ò»)Á½Ö±Ïß½»µãÓë·½³Ì×é½âµÄ¹Øϵ ÉèÁ½Ö±Ïߵķ½³ÌÊÇ
l1£º A1x+B1y+c1=0£¬ l2£º A2x+B2y+C2=0£®
Èç¹ûÁ½ÌõÖ±ÏßÏཻ£¬ÓÉÓÚ½»µãͬʱÔÚÁ½ÌõÖ±ÏßÉÏ£¬½»µãµÄ×ø±êÒ»¶¨ÊÇÕâÁ½¸ö·½³ÌµÄ¹«¹²½â£»·´Ö®£¬Èç¹ûÕâÁ½¸ö¶þÔªÒ»´Î·½³ÌÖ»ÓÐÒ»¸ö¹«¹²½â£¬ÄÇôÒÔÕâ¸ö½âΪ×ø±êµÄµã±ØÊÇÖ±Ïßl1ºÍl2µÄ½»µã£®Òò´Ë£¬Á½ÌõÖ±ÏßÊÇ·ñÏཻ£¬¾ÍÒª¿´ÕâÁ½ÌõÖ±Ïߵķ½³ÌËù×é³ÉµÄ·½³Ì×é
ÊÇ·ñÓÐΨһ½â£® (¶þ)¶Ô·½³Ì×éµÄ½âµÄÌÖÂÛ
ÈôA1¡¢A2¡¢B1¡¢B2ÖÐÓÐÒ»¸ö»òÁ½¸öΪÁ㣬ÔòÁ½Ö±ÏßÖÐÖÁÉÙÓÐÒ»ÌõÓë×ø±êÖáƽÐУ¬ºÜÈÝÒ׵õ½Á½Ö±ÏßµÄλÖùØϵ£®
ÏÂÃæÉèA1¡¢A2¡¢B1¡¢B2È«²»ÎªÁ㣮 ½âÕâ¸ö·½³Ì×飺
(1)¡ÁB2µÃ A1B2x+B1B2y+B2C1=0£¬ (3)
(2)¡ÁB1µÃ
A2B1x+B1B2y+B1C2=0£® (4)
(3)-(4)µÃ(A1B2-A2B1)x+B2C1-B1C2=0£® ÏÂÃæ·ÖÁ½ÖÖÇé¿öÌÖÂÛ£º
½«ÉÏÃæ±í´ïʽÖÐÓұߵÄA1¡¢A2·Ö±ðÓÃB1¡¢B2´úÈë¼´¿ÉµÃ
ÉÏÃæµÃµ½y¿É°Ñ·½³Ì×éд³É
¼´½«xÓÃy»»£¬A1¡¢A2·Ö±ðÓëB1¡¢B2¶Ô»»ºóÉÏÃæµÄ·½³Ì×黹ԳÉÔ·½³Ì×飮 ×ÛÉÏËùÊö£¬·½³Ì×éÓÐΨһ½â£º
Õâʱl1Óël2Ïཻ£¬ÉÏÃæxºÍyµÄÖµ¾ÍÊǽ»µãµÄ×ø±ê£® (2)µ±A1B2-A2B1=0ʱ£º
¢Ùµ±B1C2-B2C1¡Ù0ʱ£¬ÕâʱC1¡¢C2²»ÄÜȫΪÁã(Ϊʲô£¿)£®ÉèC2
¢ÚÈç¹ûB1C2-B2C1=0£¬ÕâʱC1¡¢C2»òȫΪÁã»òÈ«²»ÎªÁã(µ±C1¡¢
(Èý)ͳһͨ¹ý½â·½³Ì×éÑо¿Á½Ö±ÏßµÄλÖùØϵÓëͨ¹ýбÂÊÑо¿Á½Ö±ÏßλÖùØϵµÄ½áÂÛ
˵Ã÷£ºÔÚƽÃ漸ºÎÖУ¬ÎÒÃÇÑо¿Á½Ö±ÏßµÄλÖùØϵʱ£¬²»¿¼ÂÇÁ½ÌõÖ±ÏßÖغϵÄÇé¿ö£¬¶øÔÚ½âÎö¼¸ºÎÖУ¬ÓÉÓÚÁ½¸ö²»Í¬µÄ·½³Ì¿ÉÒÔ±íʾͬһÌõÖ±Ïߣ¬ÎÒÃÇ°ÑÖغÏÒ²×÷ΪÁ½Ö±ÏßµÄÒ»ÖÖλÖùØϵÀ´Ñо¿£®
(ËÄ)ÀýÌâ
Àý1 ÇóÏÂÁÐÁ½ÌõÖ±ÏߵĽ»µã£º l1£º3x+4y-2=0£¬ l2£º 2x+y+2=0£® ½â£º½â·½³Ì×é
¡àl1Óël2µÄ½»µãÊÇM(-2£¬2)£® Àý2
ÒÑÖªÏÂÁи÷¶ÔÖ±ÏßµÄλÖùØϵ£¬Èç¹ûÏཻ£¬Çó³ö½»µãµÄ×ø±ê£º
£¨1£©l1: x-y=0, l2: 3x+3y-10 ;
£¨2£©l1: 3x-y+4=0 l2: 6x-2y=0 ;
£¨3£©l1: 3x+4y-5=0, l2: 6x+8y-10=0 ½â£º£¨1£©½â·½³Ì×é
5?x???x?y?0?3£¬ µÃ ? ??3x?3y?10?0?y?5?3?55£¬ £© 33ËùÒÔ£¬l1 Óël2Ïཻ£¬½»µãÊÇM£¨
£¨2£©½â·½³Ì×é??3x?y?4?0(1) (1)¡Á2-(2)µÃ 9=0, ì¶Ü£¬
6x?8y?10?0(2)?·½³Ì×éÎ޽⣬ËùÒÔÁ¿Ö±ÏßÎÞ¹«¹²µã£¬l1¡Î l2.
?3x?45y?5?0(1)£¨3£©½â·½³Ì×é? (1)¡Á2µÃ 6x+8y-10=0
6x?8y?10?0(2)?Òò´Ë£¬(1)ºÍ(2)¿ÉÒÔ»¯³Éͬһ¸ö·½³Ì£¬¼´(1)ºÍ(2)±íʾͬһÌõÖ±Ïߣ¬l1Óël2ÖØºÏ (Îå)¿ÎÌÃÁ·Ï°£ºÓÉѧÉúÍê³É£¬½Ìʦ½²ÆÀ ¿ÎºóС½á
(1)Á½Ö±ÏßµÄλÖùØϵÓëËüÃǶÔÓ¦µÄ·½³ÌµÄ½âµÄ¸öÊýµÄ¶ÔÓ¦¹Øϵ£® (2)ÇóÁ½ÌõÖ±Ïß½»µãµÄÒ»°ã·½·¨£® £®Îå¡¢²¼ÖÃ×÷Òµ
1£®½Ì²ÄµÚ116Ò³£¬Ï°Ìâ3.3A×éµÚ1Ìâ Áù¡¢°åÊéÉè¼Æ
1£®ÅжÏÏÂÁи÷¶ÔÖ±ÏßµÄλÖùØϵ£¬Èç¹ûÏཻ£¬ÔòÇó³ö½»µãµÄ×ø±ê£º