ⅹ =
21 ⅹ = 1.6 ⅹ = 1.2 2331.3x ∶ x = 3∶12 ∶ x = 5%∶0.6 = 48183.6
ⅹ = 3 ⅹ = 4.5 ⅹ = 0.26
14、在一个比例里,两个外项的积是30,已知一个内项是10,另一个内项是( 3 )。
小学数学总复习专题讲解及训练(四)
主要内容
比例尺、面积变化、确定位置
学习目标
1、使学生在具体情境中理解比例尺的意义,能看懂线段比例尺。会求一幅图的比例尺,能按给
定的比例尺求相应的实际距离或图上距离,会把数值比例尺与线段比例尺进行转化。
2、使学生在经历“猜想-验证”的过程中,自主发现平面图形按比例放大后面积的变化规律。 3、在解决问题的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略。 4、使学生在具体情境中初步理解北偏东(西)、南偏东(西)的含义,初步掌握用方向和距离确定物体位置的方法,能根据给定方向和距离在平面图上确定物体的位置或描述简单的行走路线。
5、使学生在用方向和距离确定物体位置的过程中,进一步培养观察能力、识图能力和有条理的进行表达的能力。发展空间观念。
6、使学生积极参与观察、测量、画图、交流等活动,获得成功的体验,体会数学知识与生活实
际的联系,拓展知识视野,激发学习兴趣。
考点分析
1、图上距离和实际距离的比,叫做这幅图的比例尺。 2、比例尺 =
图上距离,比例尺有两种形式:数值比例尺和线段比例尺。
实际距离1)后,放大(或缩n3、把一个平面图形按照一定的倍数(n)放大或缩小到原来的几分之一(
小)后与放大(或缩小)前图形的面积比是n2:1(或1:n2)。 4、知道 了物体的方向和距离,就能确定物体的位置。
5、根据物体的位置,结合比例尺的相关知识,可以在平面图上画出物体的位置。画的时候先按方向画一条射线,在根据图上距离找出点所在的位置。
6、描述行走路线要依次逐段地说,每一段都应说出行走的方向与路程。
典型例题:
例1、(认识比例尺)
王伯伯家有一块长方形的菜地,长40米,宽30米。把这块菜地按一定的比例缩小,画在平面图上长4厘米,宽3厘米。你能分别写出菜地长、宽的图上距离和实际距离的比吗?
分析与解:图上距离和实际距离的单位不同,先要统一成相同的单位,写出比后再化简。
40米 = 4000厘米 3厘米 = 0.03米
40.03311 = = = 400030300010001000图上距离和实际距离的比,叫做这幅图的比例尺。 图上距离 : 实际距离 = 比例尺或
图上距离 = 比例尺
实际距离1,仍读作1比1000图上距离和实际距离的比是1:1000,这幅图的比例尺是1:1000,也可写成
1000。
点评:求一幅地图的比例尺是一种比较简单的题目。做的时候唯一要注意的就是末尾0的问题:
一是米、千米化成厘米的时候要在米、千米那个数的末尾加上2、5个0;二是在求比例尺的结果时要注意0的个数。多数一数、想一想,是不会有错的。
例2、(对比例尺的理解及比例尺的两种表示方法)
比例尺1:1000表示图上距离是实际距离的几分之几?实际距离是图上距离的多少倍?图上1厘米表示实际距离多少米?
分析与解:比例尺1:1000表示图上距离是实际距离的
1,实际距离是图上距离的1000倍,1000图上1厘米的距离代表实际距离1000厘米,即10米。
像形如1:1000这样的比例尺叫做数值比例尺。比例尺1:1000还可以这样表示
0 10 20 30米
,这是线段比例尺,它表示图上1厘米的距离代表实际距离10米。
例3、一个手表零件长2毫米,画在一幅图上长4厘米,这幅图的比例尺是多少? 错误解法:4厘米 = 40毫米 2 : 40 = 1 : 20
思路分析:无论什么样的图纸,比例尺始终是图上距离与实际距离的比,根据比例尺的定义,
用“图上距离 : 实际距离 = 比例尺”去求。
正确解答:4厘米 = 40毫米 40 : 2 = 20 : 1
点评:比例尺通常情况下都应该写成前项是1的比。但比例尺的作用除了把实际距离缩小,还
可以把实际距离扩大,这样比例尺的前项就比后项大,这时后项通常化成1。在解答时,只要坚持好“图上距离 : 实际距离 = 比例尺”,图上距离在前就可以了。
例4、(根据比例尺求图上距离或实际距离) 在比例尺是
1的地图上,量得甲、乙两地的距离是2.5厘米。两地的实际距离是多少米?
600001分析与解:方法1:比例尺是,说明实际距离是图上距离的60000倍。
600002.5×60000 = 150000(厘米) 150000(厘米)= 1500米
方法2:比例尺是
1,也就是图上1厘米的距离代表实际距离60000厘米,即
60000600米。
2.5×600 = 1500(米)
方法3:根据
图上距离 = 比例尺,可以用“图上距离 ÷ 比例尺”或“解比例”
实际距离1 = 2.5×60000 = 150000(厘米)= 1500米
60000的方法来求实际距离。 2.5 ÷
解:设两地的实际距离是ⅹ厘米。
2.5? =
1
600001ⅹ = 2.5 × 60000 ⅹ = 150000
150000(厘米)= 1500米
答:两地的实际距离是1500厘米。
例5、(平面图形按照一定的比放大后,面积扩大了比的平方倍)
下面的大长方形是由一个小长方形按比例放大后得到的图形。分别量出它们的长和宽,算算大长方形与小长方形面积的比是几比几。
分析与解:量得小长方形的长是2.5厘米,宽是1厘米;大长方形的长是7.5厘米,宽是3厘
米。大长方形与小长方形长的比是7.5 : 2.5 = 3 : 1,宽的比是3 : 1。
大长方形的面积7.5?337.5 = = × = 9 : 1 = 32 : 1
小长方形的面积2.5?112.5答:大长方形与小长方形面积的比是9 : 1。
例6、(认识北偏东(西)若干度、南偏东(西)若干度等方向)
如图,一辆汽车向正北方向行驶,你能说出商场和书店分别在汽车的什么方向吗?
N
商场 北 45o
60o 书店
0 3 6 9千米 汽车
分析与解:从图上可以看出,以汽车为中心,书店在汽车的东北方向,商场在汽车的西北方向。
怎样才能更准确地表示它们的位置呢?
东北方向也叫做北偏东方向,书店在汽车的北偏东60o方向。 西北方向也叫做北偏西方向,商场在汽车的北偏西45o方向。
答:书店在汽车的北偏东60o方向,商场在汽车的北偏西45o方向。
例7、(知道了物体的方向和距离,才能确定物体的具体位置) 量出上图中书店到汽车的图上距离,根据比例尺算一算,书店在汽车北偏东60o方向的多少千米处?商场呢?
分析与解:从图中量得书店和商场到汽车的图上距离分别是1.2厘米和2.3厘米,根据比例尺,
图上距离1厘米代表实际距离3千米,分别算出实际距离。 1.2 × 3 = 3.6(千米)┄┄┄书店 2.3 × 3 = 6.9(千米)┄┄┄商场
答:书店在汽车北偏东60o方向的3.6千米处,商场在汽车北偏西45o方向的6.9千米处。
点评:只有在方向词的后面添上角的度数,才能准确描述物体所在的位置。确定方向时,一定