2018年广东省湛江市中考数学试卷 下载本文

序和运算法则.

19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,

(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)

(2)在(1)条件下,连接BF,求∠DBF的度数.

【考点】KG:线段垂直平分线的性质;L8:菱形的性质;N2:作图—基本作图.

【专题】555:多边形与平行四边形.

【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;

(2)根据∠DBF=∠ABD﹣∠ABF计算即可; 【解答】解:(1)如图所示,直线EF即为所求;

(2)∵四边形ABCD是菱形,

∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C. ∴∠ABC=150°,∠ABC+∠C=180°, ∴∠C=∠A=30°, ∵EF垂直平分线段AB,

第17页(共28页)

∴AF=FB,

∴∠A=∠FBA=30°,

∴∠DBF=∠ABD﹣∠FBE=45°.

【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.

20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.

(1)求该公司购买的A、B型芯片的单价各是多少元?

(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?

【考点】B7:分式方程的应用.

【专题】34:方程思想;521:一次方程(组)及应用;522:分式方程及应用. 【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论; (2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.

【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条, 根据题意得:解得:x=35,

经检验,x=35是原方程的解, ∴x﹣9=26.

答:A型芯片的单价为26元/条,B型芯片的单价为35元/条. (2)设购买a条A型芯片,则购买(200﹣a)条B型芯片, 根据题意得:26a+35(200﹣a)=6280, 解得:a=80.

第18页(共28页)

=,

答:购买了80条A型芯片.

【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.

21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.

(1)被调查员工的人数为 800 人: (2)把条形统计图补充完整;

(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?

【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.

【专题】1:常规题型;542:统计的应用.

【分析】(1)由“不剩”的人数及其所占百分比可得答案;

(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可; (3)用总人数乘以样本中“剩少量”人数所占百分比可得. 【解答】解:(1)被调查员工人数为400÷50%=800人, 故答案为:800;

(2)“剩少量”的人数为800﹣(400+80+40)=280人, 补全条形图如下:

第19页(共28页)

(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×人.

=3500

【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.

22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE. (1)求证:△ADE≌△CED; (2)求证:△DEF是等腰三角形.

【考点】KD:全等三角形的判定与性质;LB:矩形的性质;PB:翻折变换(折叠问题).

【专题】14:证明题.

【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);

(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.

第20页(共28页)