定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判
断方法:①表达式相同;②定义域一致 (两点必须同时具备)
值域补充:(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.
(2)应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。
2. 函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,
叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A }。图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。
(2)画法
A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.
B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换 (3)作用:
1、直观的看出函数的性质;
2、利用数形结合的方法分析解题的思路。提高解题的速度。发现解题中的错误。
3. 了解区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示. 4.什么叫做映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A?B为从集合A到集合B的一个映射。记作“f:A?B” 给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b 的原象
说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,
即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。
常用的函数表示法及各自的优点:
1 ○ 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据; 2 ○解析法:必须注明函数的定义域;
3 ○图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征; 4 ○列表法:选取的自变量要有代表性,应能反映定义域的特征.
注意:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值
补充一:分段函数 :在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入
Page 5 of
33
相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
补充二:复合函数:如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。例如: y=2y=2cos(X+1) 5.函数单调性 (1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1 如果对于区间D上的任意两个自变量的值x1,x2,当x1 1 注意:○函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 2 ○必须是对于区间D内的任意两个自变量x1,x2;当x1 (2)图象的特点 如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3)函数单调区间与单调性的判定方法 (A) 定义法: 1 ○任取x1,x2∈D,且x1 3 ○变形(通常是因式分解和配方); 4 ○定号(即判断差f(x1)-f(x2)的正负); 5 ○下结论(指出函数f(x)在给定的区间D上的单调性). (B)图象法(从图象上看升降)_ (C)复合函数的单调性 复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下: 函数 u=g(x) y=f(u) y=f[g(x)] 增 增 增 增 减 减 单调性 减 增 减 减 减 增 2 sinX 注意:1、函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗? 6.函数的奇偶性 (1)偶函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2)奇函数 Page 6 of 33 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数. 1 注意:○函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶 性,也可能既是奇函数又是偶函数。 2 ○由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称). (3)具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 总结:利用定义判断函数奇偶性的格式步骤: 1 ○首先确定函数的定义域,并判断其定义域是否关于原点对称; 2 ○确定f(-x)与f(x)的关系; 3 ○作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若 不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 . 7、函数的解析表达式 (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要 求出函数的定义域. (2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法; 已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x) 8.函数最大(小)值 1 ○利用二次函数的性质(配方法)求函数的最大(小)值 2 ○利用图象求函数的最大(小)值 3 ○利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b) 第二章 基本初等函数 一、指数函数 一)指数与指数幂的运算 1.根式的概念:一般地,如果xn?a,那么x叫做a的n次方根(n th root),其中n>1,且n∈N. * 当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.此时,,这里n叫做根指数a的n次方根用符号na表示.式子na叫做根式(radical)(radical exponent),a叫做被开方数(radicand). 当n是偶数时,正数的n次方根有两个,这两个数互为相反数.此时,正数a的正 Page 7 of 33 n?a(a?0)an?|a|????a(a?0) 的n次方根用符号na 表示,负的n次方根用符号-na表示.正的n次方根与负的n次方根可以合并成±na(a>0).由 此可得:负数没有偶次方根;0的任何次方根都是0,记作n0?0。 注意:当n是奇数时,nan?a,当n是偶数时, 2.分数指数幂 正数的分数指数幂的意义,规定: a?a(a?0,m,n?N,n?1)0的正分数指数幂等于0,0的负分数指数幂没有意义 mnnm*a?mn?1amn?1nam(a?0,m,n?N*,n?1)指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性 质也同样可以推广到有理数指数幂. 3.实数指数幂的运算性质 rr?sr(1)a·a?a(a ?0,r,s?R)(ar)s?ars(2) ( ab)r?aras(3). (a?0,r,s?R)(a?0,r,s?R)二)指数函数及其性质 1、指数函数的概念: 一般地,函数y?ax(a?0,且a?1)叫做指数函数(exponential function),其中x是自变量,函数的定义 域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a>1 60 函数的定义域为R 非奇非偶函数 函数的值域为R a0?1 +自左向右看,图象逐渐下降 在第一象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于1 增函数 x?0,ax?1 减函数 x?0,ax?1 x?0,ax?1 x?0,ax?1 Page 8 of